166 research outputs found

    Melamine Faced Panels Defect Classification beyond the Visible Spectrum

    Get PDF
    In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution

    Trends and Opportunities of Industry 4.0 in Wood Manufacturing Processes

    Get PDF
    Wood industry is key for sustainability and an important economic activity in many countries. In manufacturing plants, wood variability turns operation management more complex. In a competitive scenario, assets availability is critical to achieve higher productivity. In a new fourth industrial revolution, Industry 4.0, data engineering permits efficient decisions making. Phenomena difficult to model with conventional techniques are turned possible with algorithms based on artificial intelligence. Sensors and machine learning techniques allow intelligent analysis of data. However, algorithms are highly sensitive of the problem and his study to decide on which work is critical. For the manufacturing wood processes, Industry 4.0 is a great opportunity. Wood is a material of biological origin and generates variabilities over the manufacturing processes. For example, in the veneer drying, density and anatomical structure impact the product quality. Scanners have been developed to measure variables and outcomes, but decisions are made yet by humans. Today, robust sensors, computing capacity, communications and intelligent algorithms permit to manage wood variability. Real-time actions can be achieved by learning from data. This paper presents trends and opportunities provided by Industry 4.0 components. Sensors, decision support systems and intelligent algorithms use are reviewed. Some applications are presented

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Engineered Wood Products for Construction

    Get PDF
    Wood is a gift from nature. It is a sustainable and renewable bio-composite material that possesses a natural ability to mitigate carbon dioxide. However, due to deforestation and climate change, it has become necessary to develop alternative building and construction materials. Engineered wood products (EWPs) such as parallel strand lumber, laminated veneer lumber, and cross-laminated timber are promising substitutions for conventional lumber products. This book presents a comprehensive overview of EWPs, including information on their classification, design, synthesis, properties, and more. It is divided into two sections: “General Overviews and Applications of EWPs” and “Recent Research and Development of EWPs”. The book is a valuable reference for manufacturers, engineers, architects, builders, researchers, and students in the field of construction

    Interior Materiality

    Get PDF
    The knowledge of materials and finishes is the bridge that links conceptual design to real-world application. It is among the core content of virtually all interior architecture/design curricula, moreover, access to up-to-date information on emerging technologies and trends is a key exigency for the contemporary designer. Accordingly, this book is authored to form a comprehensive resource for the “hows” and “whys” surrounding the functional and aesthetic contributions of a wide selection of materials and finishes used in multiple spatial design contexts. The knowledge base presented here is not only useful in shaping spatial experience, ensuring occupant well-being, and employing sustainable thinking but also beneficial in managing budget and schedule while enabling the delivery of top-quality work. The book investigates fundamental material properties, performance criteria, as well as sector-specific standards, regulations, and guidelines, with a special focus on concerns surrounding occupant health and safety as well as environmental impact and sustainability concerns. Furthermore, fabrication, installation, and maintenance issues were explored in detail. Various information collection and organization conventions are also discussed with regard to detailing, specification, estimation, and documentation of materials and finishes. The goals of the book can be listed as follows: ● Developing a vocabulary and knowledge base to comprehend and communicate concepts and paradigms associated with the history, classification, manufacturing, evaluation, fabrication, installation, and maintenance of materials and finishes. ● Identifying a broad range of materials and finishes, considering their aesthetic and performance properties, and understanding their utilization with regard to creative design intent, client expectations and requirements, user needs and experience, and incorporating life cycle implications. ● Providing a basis for achieving physical and psychological well-being for occupants, understanding the impact of changing social, cultural, economic, and ecological context, and eliminating negative environmental and social outcomes.https://newprairiepress.org/ebooks/1042/thumbnail.jp

    Liquid penetration into paper

    No full text
    The origin of this thesis lay in the production of defects associated with manufacturing LPM impregnated panels. The causes of these defects were unknown as was their exact nature. In identifying the actual nature and cause of these defects, it is necessary to research the fundamental mechanisms of fluid flow into paper as well as identifying how certain structural characteristics of paper, as well as characteristics of the penetrating liquids, affected fluid flow within paper. To understand the affect of different liquids on impregnation into porous media, simple isotropic micromodels are used to quantify the effects of surface tension and contact angle on the rate of fluid flow. The use of the Lucas-Washburn equation is questioned. Using cryo-SEM and a newly developed technique of cryo 2-photon confocal laser scanning microscopy, the actual mechanisms of fluid flow in unsized paper are identified. These are due primarily to the advance of the wetting fluid in the form of bulk liquid films along channels formed by fibre overlaps. This is in contrast to the common description of fluid penetration, where the primary flow mechanism is based on the bulk filling of pores. These channels, formed by fibre overlaps are shown to form a highly interconnected dense network of flow paths which efficiently transport the wetting fluid. The flow rates associated with penetration along a number of potential flow paths within the fibre web are calculated. The experimentally observed penetration rate is consistent with a film flow process through inter-fibre channels which is significantly slower than a penetration process dominated by meniscus flow through pores. In addition the mechanism of fluid flow in internally sized papers is presented. The effects of different fillers on paper structure, flow path morphologies and imbibition rate are also quantified. Laboratory papers with different types and amounts of filler are studied using SEM and cryo-SEM and a newly developed technique of high speed video microscopy to quantify such effects

    A study of materials used for muon chambers at the CMS Experiment at the LHC: interaction with gas, new materials and new technologies for detector upgrade

    Get PDF
    This thesis lays its foundation in both technological and theoretical stud- ies carried out between several aspects of applied engineering. There are several original contributions within the material science. The first is the detailed studies about the CMS RPC gas filters, which required an intense 3 years data-taking and ended up with a complete characterization of purifier materials. On top of this a stable ad − hoc setup (GGM) has been devel- oped for the CMS Experiment in order to monitor the RPC muon chamber working point. Finally a complete new detector has been designed, build and tested using new technology and new electronics establishing the word’s record in size for this kind of detector, which is taken under consideration for the upgrade of the high-η region of the CMS Experiment
    corecore