64 research outputs found

    Local quadratic convergence of polynomial-time interior-point methods for conic optimization problems

    Get PDF
    In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradient proximity measure, which ensures an automatic transformation of the global linear rate of convergence to the local quadratic one under some mild assumptions. Our step-size procedure for the predictor step is related to the maximum step size (the one that takes us to the boundary). It appears that in order to obtain local superlinear convergence, we need to tighten the neighborhood of the central path proportionally to the current duality gapconic optimization problem, worst-case complexity analysis, self-concordant barriers, polynomial-time methods, predictor-corrector methods, local quadratic convergence

    Advances in Interior Point Methods for Large-Scale Linear Programming

    Get PDF
    This research studies two computational techniques that improve the practical performance of existing implementations of interior point methods for linear programming. Both are based on the concept of symmetric neighbourhood as the driving tool for the analysis of the good performance of some practical algorithms. The symmetric neighbourhood adds explicit upper bounds on the complementarity pairs, besides the lower bound already present in the common N−1 neighbourhood. This allows the algorithm to keep under control the spread among complementarity pairs and reduce it with the barrier parameter ÎŒ. We show that a long-step feasible algorithm based on this neighbourhood is globally convergent and converges in O(nL) iterations. The use of the symmetric neighbourhood and the recent theoretical under- standing of the behaviour of Mehrotra’s corrector direction motivate the introduction of a weighting mechanism that can be applied to any corrector direction, whether originating from Mehrotra’s predictor–corrector algorithm or as part of the multiple centrality correctors technique. Such modification in the way a correction is applied aims to ensure that any computed search direction can positively contribute to a successful iteration by increasing the overall stepsize, thus avoid- ing the case that a corrector is rejected. The usefulness of the weighting strategy is documented through complete numerical experiments on various sets of publicly available test problems. The implementation within the hopdm interior point code shows remarkable time savings for large-scale linear programming problems. The second technique develops an efficient way of constructing a starting point for structured large-scale stochastic linear programs. We generate a computation- ally viable warm-start point by solving to low accuracy a stochastic problem of much smaller dimension. The reduced problem is the deterministic equivalent program corresponding to an event tree composed of a restricted number of scenarios. The solution to the reduced problem is then expanded to the size of the problem instance, and used to initialise the interior point algorithm. We present theoretical conditions that the warm-start iterate has to satisfy in order to be successful. We implemented this technique in both the hopdm and the oops frameworks, and its performance is verified through a series of tests on problem instances coming from various stochastic programming sources

    Second order strategies for complementarity problems

    Get PDF
    Orientadores: Sandra Augusta Santos, Roberto AndreaniTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação CientificaResumo: Neste trabalho reformulamos o problema de complementaridade nĂŁo linear generalizado (GNCP) em cones poliedrais como um sistema nĂŁo linear com restrição de nĂŁo negatividade em algumas variĂĄveis, e trabalhamos na resolução de tal reformulação por meio de estratĂ©gias de pontos interiores. Em particular, definimos dois algoritmos e provamos a convergĂȘncia local de tais algoritmos sob hipĂłteses usuais. O primeiro algoritmo Ă© baseado no mĂ©todo de Newton, e o segundo, no mĂ©todo tensorial de Chebyshev. O algoritmo baseado no mĂ©todo de Chebyshev pode ser visto como um mĂ©todo do tipo preditor-corretor. Tal algoritmo, quando aplicado a problemas em que as funçÔes envolvidas sĂŁo afins, e com escolhas adequadas dos parĂąmetros, torna-se o bem conhecido algoritmo preditor-corretor de Mehrotra. TambĂ©m apresentamos resultados numĂ©ricos que ilustram a competitividade de ambas as propostas.Abstract: In this work we reformulate the generalized nonlinear complementarity problem (GNCP) in polyhedral cones as a nonlinear system with nonnegativity in some variables and propose the resolution of such reformulation through interior-point methods. In particular we define two algorithms and prove the local convergence of these algorithms under standard assumptions. The first algorithm is based on Newton's method and the second, on the Chebyshev's tensorial method. The algorithm based on Chebyshev's method may be considered a predictor-corrector one. Such algorithm, when applied to problems for which the functions are affine, and the parameters are properly chosen, turns into the well-known Mehrotra's predictor corrector algorithm. We also present numerical results that illustrate the competitiveness of both proposals.DoutoradoOtimizaçãoDoutor em MatemĂĄtica Aplicad

    A New Unblocking Technique to Warmstart Interior Point Methods Based on Sensitivity Analysis

    Get PDF
    One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced starting point which is close to the boundary of the feasible region, as is typical, might lead to blocking of the search direction. Several techniques have been proposed to address this issue. Most of these aim to lead the iterate back into the interior of the feasible region- we classify them as either “modification steps” or “unblocking steps ” depending on whether the modification is taking place before solving the modified problem to prevent future problems, or during the solution if and when problems become apparent. A new “unblocking” strategy is suggested which attempts to directly address the issue of blocking by performing sensitivity analysis on the Newton step with the aim of increasing the size of the step that can be taken. This analysis is used in a new technique to warmstar

    Limited Memory BFGS method for Sparse and Large-Scale Nonlinear Optimization

    Get PDF
    Optimization-based control systems are used in many areas of application, including aerospace engineering, economics, robotics and automotive engineering. This work was motivated by the demand for a large-scale sparse solver for this problem class. The sparsity property of the problem is used for the computational efficiency regarding performance and memory consumption. This includes an efficient storing of the occurring matrices and vectors and an appropriate approximation of the Hessian matrix, which is the main subject of this work. Thus, a so-called the limited memory BFGS method has been developed. The limited memory BFGS method, has been implemented in a software library for solving the nonlinear optimization problems, WORHP. Its solving performance has been tested on different optimal control problems and test sets

    On the finite termination of an entropy function based smoothing Newton method for vertical linear complementarity problems

    Get PDF
    By using a smooth entropy function to approximate the non-smooth max-type function, a vertical linear complementarity problem (VLCP) can be treated as a family of parameterized smooth equations. A Newton-type method with a testing procedure is proposed to solve such a system. We show that the proposed algorithm finds an exact solution of VLCP in a finite number of iterations, under some conditions milder than those assumed in literature. Some computational results are included to illustrate the potential of this approach.Newton method;Finite termination;Entropy function;Smoothing approximation;Vertical linear complementarity problems

    Machine learning with Lipschitz classifiers

    Get PDF
    Magdeburg, Univ., Fak. fĂŒr Elektrotechnik und Informationstechnik, Diss., 2010AndrĂ© Stuhlsat

    [Activity of Institute for Computer Applications in Science and Engineering]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science

    On the finite termination of an entropy function based smoothing Newton method for vertical linear complementarity problems

    Get PDF
    By using a smooth entropy function to approximate the non-smooth max-type function, a vertical linear complementarity problem (VLCP) can be treated as a family of parameterized smooth equations. A Newton-type method with a testing procedure is proposed to solve such a system. We show that the proposed algorithm finds an exact solution of VLCP in a finite number of iterations, under some conditions milder than those assumed in literature. Some computational results are included to illustrate the potential of this approach
    • 

    corecore