131 research outputs found

    A Style-Based Generator Architecture for Generative Adversarial Networks

    Full text link
    We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.Comment: CVPR 2019 final versio

    MegaPortraits: One-shot Megapixel Neural Head Avatars

    Full text link
    In this work, we advance the neural head avatar technology to the megapixel resolution while focusing on the particularly challenging task of cross-driving synthesis, i.e., when the appearance of the driving image is substantially different from the animated source image. We propose a set of new neural architectures and training methods that can leverage both medium-resolution video data and high-resolution image data to achieve the desired levels of rendered image quality and generalization to novel views and motion. We demonstrate that suggested architectures and methods produce convincing high-resolution neural avatars, outperforming the competitors in the cross-driving scenario. Lastly, we show how a trained high-resolution neural avatar model can be distilled into a lightweight student model which runs in real-time and locks the identities of neural avatars to several dozens of pre-defined source images. Real-time operation and identity lock are essential for many practical applications head avatar systems

    Re-Training StyleGAN -- A First Step Towards Building Large, Scalable Synthetic Facial Datasets

    Get PDF
    StyleGAN is a state-of-art generative adversarial network architecture that generates random 2D high-quality synthetic facial data samples. In this paper, we recap the StyleGAN architecture and training methodology and present our experiences of retraining it on a number of alternative public datasets. Practical issues and challenges arising from the retraining process are discussed. Tests and validation results are presented and a comparative analysis of several different re-trained StyleGAN weightings is provided 1. The role of this tool in building large, scalable datasets of synthetic facial data is also discussed

    TEGLO: High Fidelity Canonical Texture Mapping from Single-View Images

    Full text link
    Recent work in Neural Fields (NFs) learn 3D representations from class-specific single view image collections. However, they are unable to reconstruct the input data preserving high-frequency details. Further, these methods do not disentangle appearance from geometry and hence are not suitable for tasks such as texture transfer and editing. In this work, we propose TEGLO (Textured EG3D-GLO) for learning 3D representations from single view in-the-wild image collections for a given class of objects. We accomplish this by training a conditional Neural Radiance Field (NeRF) without any explicit 3D supervision. We equip our method with editing capabilities by creating a dense correspondence mapping to a 2D canonical space. We demonstrate that such mapping enables texture transfer and texture editing without requiring meshes with shared topology. Our key insight is that by mapping the input image pixels onto the texture space we can achieve near perfect reconstruction (>= 74 dB PSNR at 1024^2 resolution). Our formulation allows for high quality 3D consistent novel view synthesis with high-frequency details at megapixel image resolution
    • …
    corecore