1,870 research outputs found

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    A Systems Approach to the Development of Enhanced Learning for Engineering Systems Design Analysis

    Get PDF
    yesThis paper considers the importance of applying sound instructional systems design to the development of a learning intervention aimed at developing skills for the effective deployment of an enhanced methodology for engineering systems design analysis within a Product Development context. The leading features of the learning intervention are summarised including the content and design of a training course for senior engineering management which is central to the intervention. The importance of promoting behavioural change by fostering meaningful learning as a collaborative process is discussed. Comparison is made between the instructional design of the corporate learning intervention being developed and the systems engineering based product design process which is the subject of the intervention

    Implementation of Radial Basis Function Artificial Neural Network into an Adaptive Equivalent Consumption Minimization Strategy for Optimized Control of a Hybrid Electric Vehicle

    Get PDF
    Continued increases in the emission of greenhouse gases by passenger vehicles has accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. The design and implementation of an optimized control strategy is a complex challenge. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require a priori knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. Real-time strategies incorporate methods such as drive cycle prediction algorithms, parameter feedback, driving pattern recognition algorithms, etc. The goal of this work is to use a previously defined strategy which has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strategy used is the Equivalent Consumption Minimization Strategy (ECMS) [1], which uses an equivalence factor to define the control strategy. The equivalence factor essentially defines the torque split between the electric motor and internal combustion engine. Consequently, the equivalence factor greatly affects fuel economy. An equivalence factor that is optimal (with respect to fuel economy) for a single drive cycle can be found offline – with a priori knowledge of the drive cycle. The RBF ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data are used to train the RBF ANN, each set contains characteristics from a different drive cycle. Each drive cycle is characterized by 9 parameters. For each drive cycle, the optimal equivalence factor is determined and included in the training data. The performance of the RBF ANN is evaluated against the fuel economy obtained with the optimal equivalence factor from the ECMS. For the majority of drive cycles examined, the RBF ANN implementation is shown to produce fuel economy values that are within +/- 2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF ANN is that it does not require a priori drive cycle knowledge and is able to be implemented real time while meeting or exceeding the performance of the optimal ECMS. Recommendations are made on how the RBF ANN could be improved to produce better results across a greater array of driving conditions

    Powertrain Fuel Consumption Modeling and Benchmark Analysis of a Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming

    Get PDF
    As regulations on the emission of greenhouse gasses continue to tighten on the automotive industry, the production of hybrid electric vehicles has gained significant popularity in recent years. With the increase in production, there has been a parallel demand in the advancement of both mechanical hardware and control system implementation used in these vehicles. A critical factor in the efficient operation of a hybrid electric vehicle is the energy management strategy where the goal is to maximize the efficient use of fuel energy to propel the vehicle. Designing a fuel-efficient control system is a complex challenge due to the degrees of freedom that exist in the control of a hybrid electric vehicle. Several methods exist for the real-time implementation of control strategies that employ heuristic or optimization-based algorithms; however, these control strategies typically rely on the results of offline optimization as a benchmark against which the control strategies are evaluated. Offline energy management optimization strategies require a pre-defined driving schedule for which the operation of the powertrain can be evaluated to determine the globally optimal control policy. The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determine control trends that can be used to improve existing algorithms. The optimal combined CS fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6L 2019 Chevrolet Blazer

    Framework for Data Acquisition and Fusion of Camera and Radar for Autonomous Vehicle Systems

    Get PDF
    The primary contribution is the development of the data collection testing methodology for autonomous driving systems of a hybrid electric passenger vehicle. As automotive manufacturers begin to develop adaptive cruise control technology in vehicles, progress is being made toward the development of fully-autonomous vehicles. Adaptive cruise control capability is classified into five levels defined by the Society of Automotive Engineering. Some vehicles under development have attained higher levels of autonomy, but the focus of most commercial development is Level 2 autonomy. As the level of autonomy increases, the sensor technology becomes more advanced with a sensor suite which includes radar, camera, and vehicle-to-everything radio. Sensors must detect the objects around the vehicle to be able for communicate the data to the adaptive cruise control algorithm. If a vehicle is in an accident, the driver is typically responsible for the damages, but with an autonomous vehicle, there might not be a driver. A process to guarantee a vehicle will perform as it was developed is critical to a vehicle’s development and testing. The goal of this work is to implement a verification and validation system that can be used on adaptive cruise control systems. The system developed in this paper used different testing environments such as model-in-the-loop, hardware-in-the-loop, and vehicle-in-the-loop, to fully validate an autonomous vehicle. A systematic data acquisition process has been developed to support autonomous vehicle development. The data that was taken had an organized way of comparing the results in each environment. Requirements management, vehicle logbook, and test case creation played a vital role in combining the information across the environments. The method produced a consumer-ready adaptive cruise control system in a 2019 Chevrolet Blazer RS. The vehicle was able to perform at an Advanced Vehicle Technology Competition where the adaptive cruise control system placed 1st in Connected and Automated Vehicle Perception System & Adaptive Cruise Control Drive Quality Evaluation. Results are presented that illustrate the utility of the data acquisition and multi-layer testing process for autonomous vehicle development

    Baja SAE eCVT Mechanical Design

    Get PDF
    This objective of this project was to design, manufacture, and test the mechanical systems of an electronically-controlled continuously variable transmission (eCVT) for the Cal Poly Baja SAE vehicle

    Model-based powertrain design and control system development for the ideal all-wheel drive electric vehicle

    Get PDF
    The transfer case based all-wheel drive electric vehicle (TCAWDEV) and dual-axle AWDEV have been investigated to balance concerns about energy consumption, drivability and stability of vehicles. However, the mentioned powertrain architectures have the torque windup issue or the wheel skidding issue. The torque windup is an inherent issue of mechanical linked all-wheel drive systems. The hydraulic motor-based or the electric motor-based ideal all-wheel drive powertrain can provide feasible solutions to the mentioned issues. An ideal AWDEV (IAWDEV) powertrain architecture and its control schemes were proposed by this research; the architecture has four independent driving motors in powertrain. The IAWDEV gives more control freedoms to implement active torque controls and traction mode controls. In essence, this research came up with the distributed powertrain concept, and developed control schemes of the distributed powertrain to replace the transfer case and differential devices. The study investigated the dual-loop motor control, the hybrid sliding mode control (HSMC) and the neural network predictive control to reduce energy consumption and achieve better drivability and stability by optimizing the torque allocation of each dependent wheel. The mentioned control schemes were respectively developed for the anti-slip, differential and yaw stability functionalities of the IAWDEV powertrain. This study also investigated the sizing method that the battery capacity was estimated by using cruise performance at 3% road grade. In addition, the model-based verification was employed to evaluate the proposed powertrain design and control schemes. The verification shows that the design and controls can fulfill drivability requirements and minimize the existing issues, including torque windup and chattering of the slipping wheel. In addition, the verification shows that the IAWDEV can harvest around two times more energy while the vehicle is running on slippery roads than the TCAWDEV and the dual-axle AWDEV; the traction control can achieve better drivability and lower energy consumption than mentioned powertrains; the mode control can reduce 3% of battery charge depleting during the highway driving test. It also provides compelling evidences that the functionalities achieved by complicated and costly mechanical devices can be carried out by control schemes of the IAWDEV; the active torque controls can solve the inherent issues of mechanical linked powertrains; the sizing method is credible to estimate the operation envelop of powertrain components, even though there is some controllable over-sizing
    • …
    corecore