63 research outputs found

    Multilocation Inventory Systems With Centralized Information.

    Get PDF
    The management of multi-echelon inventory systems has been both an important and challenging research area for many years. The rapid advance in information technology and the emphasis on integrated supply chain management have new implications for the successful operation of distribution systems. This research focuses on the study of some fundamental issues related to the operation of a multilocation inventory system with centralized information. First, we do a comparative analysis to evaluate the overall performance of individual versus centralized ordering policies for a multi-store distribution system where centralized information is available. This study integrates the existing research and clarifies one of the fundamental questions facing inventory managers today: whether or not ordering decisions should be centralized. Next, we consider a multi-store distribution system where emergency transshipments are permitted among these stores. Based on some simplifying assumptions, we develop an integrated model with a joint consideration of inventory and transshipment components. An approximately optimal (s, S) policy is obtained through a dynamic programming technique. This ordering policy is then compared with a simplified policy that assumes free and instantaneous transshipments. We also examine the relative performance of base stock policies for a centralized-ordering distribution system. Numerical studies are provided to give general guidelines for use of the policies

    Optimal transshipments and reassignments under periodic orcyclic holding cost accounting

    Get PDF
    Cataloged from PDF version of article.In a centrally managed system, inventory at a retailer can be transshipped to a stocked-out retailer to meet demand. As the inventory at the former retailer may be demanded by future customers of that retailer and transshipment time/cost is non-negligible, it can be more profitable to not transship in some situations. When unsatisfied demand is backordered, reassignment of inventory to a previously backordered demand can perhaps become profitable as demand uncertainty resolves over time. Despite this intuition, we prove that no reassignments are necessary for cost optimality under periodic holding cost accounting in a two-retailer system. This remains valid for multi-retailer systems according to numerical analyses. When holding costs are accounted for only at the end of each replenishment cycle, reassignments are necessary for optimality but insignificant in reducing the total cost. In most instances tested, the decrease in total cost from reassignments is below 2% for end of cycle holding cost accounting. These results simplify transshipment policies and facilitate finding good policies in both implementation and future studies, as reassignments can be omitted from consideration in optimization models under periodic holding cost accounting and in approximation models under cyclical cost accounting

    Service Inventory Management : Solution techniques for inventory systems without backorders

    Get PDF
    Koole, G.M. [Promotor]Vis, I.F.A. [Copromotor

    Achieving Breakthrough Service Delivery Through Dynamic Asset Deployment Strategies

    Get PDF
    Many firms have shifted their focus from their products to their customers and the value derived from owning and using the products. They see after-sales service as an important source of revenue and profit, customer acquisition and retention, and competitive differentiation. However, they also find it challenging to manage their service-supply chain. Service organizations must position and manage service-supply-chain resources optimally to support the delivery of after-sales service. They must also develop capabilities to respond rapidly to the demand for service in a cost-effective manner. To succeed in implementing a service-centric strategy, firms must determine what items in their products’ service bill-of-material hierarchy should be deployed throughout their geographical hierarchy of service support locations. They must make these complex and interrelated decisions in anticipation of service demand, which is uncertain. Firms must also be flexible and should understand the mechanisms in a service-supply chain needed to fulfill customers’ demands for service and the resulting demands for support assets and capacities. Dynamic asset deployment (DAD), a collection of management policies that promote this flexibility, can be used to develop the capabilities needed to effectively and profitably deliver services. These policies require a real-options-based optimization approach to decision making
    • …
    corecore