126 research outputs found

    Medoid-based clustering using ant colony optimization

    Get PDF
    The application of ACO-based algorithms in data mining has been growing over the last few years, and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works about unsupervised learning have focused on clustering, showing the potential of ACO-based techniques. However, there are still clustering areas that are almost unexplored using these techniques, such as medoid-based clustering. Medoid-based clustering methods are helpful—compared to classical centroid-based techniques—when centroids cannot be easily defined. This paper proposes two medoid-based ACO clustering algorithms, where the only information needed is the distance between data: one algorithm that uses an ACO procedure to determine an optimal medoid set (METACOC algorithm) and another algorithm that uses an automatic selection of the number of clusters (METACOC-K algorithm). The proposed algorithms are compared against classical clustering approaches using synthetic and real-world datasets

    Medoid-based clustering using ant colony optimization

    Get PDF
    The application of ACO-based algorithms in data mining has been growing over the last few years, and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works about unsupervised learning have focused on clustering, showing the potential of ACO-based techniques. However, there are still clustering areas that are almost unexplored using these techniques, such as medoid-based clustering. Medoid-based clustering methods are helpful—compared to classical centroid-based techniques—when centroids cannot be easily defined. This paper proposes two medoid-based ACO clustering algorithms, where the only information needed is the distance between data: one algorithm that uses an ACO procedure to determine an optimal medoid set (METACOC algorithm) and another algorithm that uses an automatic selection of the number of clusters (METACOC-K algorithm). The proposed algorithms are compared against classical clustering approaches using synthetic and real-world datasets

    MACOC: a medoid-based ACO clustering algorithm

    Get PDF
    The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach restructures ACOC from a centroid-based technique to a medoid-based technique, where the properties of the search space are not necessarily known. Instead, it only relies on the information about the distances amongst data. The new algorithm, called MACOC, has been compared against well-known algorithms (K-means and Partition Around Medoids) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository

    An approach based on tunicate swarm algorithm to solve partitional clustering problem

    Get PDF
    The tunicate swarm algorithm (TSA) is a newly proposed population-based swarm optimizer for solving global optimization problems. TSA uses best solution in the population in order improve the intensification and diversification of the tunicates. Thus, the possibility of finding a better position for search agents has increased. The aim of the clustering algorithms is to distributed the data instances into some groups according to similar and dissimilar features of instances. Therefore, with a proper clustering algorithm the dataset will be separated to some groups and it’s expected that the similarities of groups will be minimum. In this work, firstly, an approach based on TSA has proposed for solving partitional clustering problem. Then, the TSA is implemented on ten different clustering problems taken from UCI Machine Learning Repository, and the clustering performance of the TSA is compared with the performances of the three well known clustering algorithms such as fuzzy c-means, k-means and k-medoids. The experimental results and comparisons show that the TSA based approach is highly competitive and robust optimizer for solving the partitional clustering problems

    Extending the SACOC algorithm through the Nystrom method for dense manifold data analysis

    Get PDF
    Data analysis has become an important field over the last decades. The growing amount of data demands new analytical methodologies in order to extract relevant knowledge. Clustering is one of the most competitive techniques in this context.Using a dataset as a starting point, these techniques aim to blindly group the data by similarity. Among the different areas, manifold identification is currently gaining importance. Spectral-based methods, which are the mostly used methodologies in this area, are however sensitive to metric parameters and noise. In order to solve these problems, new bio-inspired techniques have been combined with different heuristics to perform the clustering solutions and stability, specially for dense datasets. Ant Colony Optimization (ACO) is one of these new bio-inspired methodologies. This paper presents an extension of a previous algorithm named Spectral-based ACO Clustering (SACOC). SACOC is a spectral-based clustering methodology used for manifold identification. This work is focused on improving this algorithm through the Nystrom extension. The new algorithm, named SACON, is able to deal with Dense Data problems.We have evaluated the performance of this new approach comparing it with online clustering algorithms and the Nystrom extension of the Spectral Clustering algorithm using several datasets

    Extending the SACOC algorithm through the Nystrom method for Dense Manifold Data Analysis

    Get PDF
    Data analysis has become an important field over the last decades. The growing amount of data demands new analytical methodologies in order to extract relevant knowledge. Clustering is one of the most competitive techniques in this context. Using a dataset as a starting point, clustering techniques aim to blindly group the data by similarity. Among the different areas, manifold identification is currently gaining importance. Spectral-based methods, which are one of the main used methodologies in this area, are sensitive to metric parameters and noise. In order to solve these problems, new bio-inspired techniques have been combined with different heuristics to perform the cluster selection, in particular for dense datasets. Dense datasets are featured by areas of higher density, where there are significantly more data instances than in the rest of the search space. This paper presents an extension of a previous algorithm named Spectral-based Ant Colony Optimization Clustering (SACOC), a spectral-based clustering methodology used for manifold identification. This work focuses on improving the SACOC algorithm through the Nystrom extension in order to deal with dense data problems. We evaluated the performance of the proposed approach, called SACON, comparing it against online clustering algorithms and the Nystrom extension of the Spectral Clustering algorithm using several benchmark datasets

    Petal-shaped clustering for the capacitated vehicle routing problem

    Get PDF
    A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfillment of the requirements for the degree of Master of Science in Engineering. Johannesburg, February 2018In this research report, k-medoid (petal-shaped) clustering is modelled and evaluated for the Capacitated Vehicle Routing Problem (CVRP). To determine routes, an existing metaheuristic, termed the Ruin and Recreate method, is applied to each generated cluster. Results are benchmarked to that of a well-known clustering method, k-means clustering. The performance of the methods is measured in terms of travel cost and distance travelled, which are well-known metrics for Vehicle Routing Problems (VRPs). The results show that k-medoid outperforms the benchmark method for most instances of the test datasets, although the CVRP without any predefined clusters still provide solutions that are closer to optimal. Clustering remains a reliable distribution management tool and reduces processing requirements of large scale CVRPs.MT 201

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Balancing exploration and exploitation in ACS algorithms for data clustering

    Get PDF
    Ant colony optimization (ACO) is a swarm algorithm inspired by different behaviors of ants. The algorithm minimizes deterministic imperfections by assuming the clustering problem as an optimization problem. A balanced exploration and exploitation activity is necessary to produce optimal results. ACO for clustering (ACOC) is an ant colony system (ACS) algorithm inspired by the foraging behavior of ants for clustering tasks. The ACOC performs clustering based on random initial centroids, which are generated iteratively during the algorithm run. This makes the algorithm deviate from the clustering solution and performs a biased exploration. This study proposes a modified ACOC called the population ACOC (P-ACOC) to address this issue. The proposed P-ACOC allows the ants to process and update their own centroid during the algorithm run, thereby intensifying the search at the neighborhood before moving to another location.However, the algorithm quickly produces a premature convergence due to the exploitation of the same clustering results during centroid update. To resolve this issue, this study proposes a second modification by adding a restart strategy that balances between the exploration and exploitation strategy in P-ACOC.Each time the algorithm begins to converge with the same clustering solution, the restart strategy is performed to change the behavior of the algorithm from exploitation to exploration. The performance of the proposed algorithm is compared with that of several common clustering algorithms using real-world datasets. The results show that the accuracy of the proposed algorithm surpasses those of other algorithms
    corecore