16,178 research outputs found

    Delay and reliability analysis of p-persistent carrier sense multiple access for multi-event industrial wireless sensor networks

    Get PDF
    In industrial environments various events can concurrently occur and may require different quality of service (QoS) provision based on different priority levels. To reduce the chances of collision and to improve efficiency in multi-event occurrence, Carrier Sense Multiple Access (CSMA) is a preferable choice for Medium Access Control (MAC) protocols. However, it also increases the overall delay. In this paper, a Priority MAC protocol for Multi-Event industrial wireless sensor networks (PMME) is proposed. In PMME, use of different p values/sequences is proposed to enable multi-priority operation, which can be optimized to suit different operational classes within industrial applications including emergency, regulatory control, supervisory control, open-loop control, alerting and monitoring systems. In this work, novel mathematical model as well as simulations are presented to validate the accuracy and performance of the proposed protocol. Mathematical analysis shows that the proposed PMME can prioritize data packets effectively while ensuring ultra-reliable and low latency communications for high priority nodes. Simulations in Castalia verify that PMME with different p values/sequences notably reduces packet delay for all four priority classes. The PMME also returns a high packet success rate compared to other two well-known priority enabled MAC protocols, QoS aware energy-efficient (QAEE) and multi-priority based QoS (MPQ), in multi-event industrial wireless sensor networks

    Energy efficient data collection and dissemination protocols in self-organised wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are used for event detection and data collection in a plethora of environmental monitoring applications. However a critical factor limits the extension of WSNs into new application areas: energy constraints. This thesis develops self-organising energy efficient data collection and dissemination protocols in order to support WSNs in event detection and data collection and thus extend the use of sensor-based networks to many new application areas. Firstly, a Dual Prediction and Probabilistic Scheduler (DPPS) is developed. DPPS uses a Dual Prediction Scheme combining compression and load balancing techniques in order to manage sensor usage more efficiently. DPPS was tested and evaluated through computer simulations and empirical experiments. Results showed that DPPS reduces energy consumption in WSNs by up to 35% while simultaneously maintaining data quality and satisfying a user specified accuracy constraint. Secondly, an Adaptive Detection-driven Ad hoc Medium Access Control (ADAMAC) protocol is developed. ADAMAC limits the Data Forwarding Interruption problem which causes increased end-to-end delay and energy consumption in multi-hop sensor networks. ADAMAC uses early warning alarms to dynamically adapt the sensing intervals and communication periods of a sensor according to the likelihood of any new events occurring. Results demonstrated that compared to previous protocols such as SMAC, ADAMAC dramatically reduces end-to-end delay while still limiting energy consumption during data collection and dissemination. The protocols developed in this thesis, DPPS and ADAMAC, effectively alleviate the energy constraints associated with WSNs and will support the extension of sensorbased networks to many more application areas than had hitherto been readily possible

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    corecore