15,890 research outputs found

    Seismic Fault Preserving Diffusion

    Full text link
    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.Comment: 10 page

    Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution

    Get PDF
    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning

    Pyramidal flux in an anisotropic diffusion scheme for enhancing structures in 3D images

    Get PDF
    Pyramid based methods in image processing provide a helpful framework for accelerating the propagation of information over large spatial domains, increasing the efficiency for large scale applications. Combined with an anisotropic diffusion scheme tailored to preserve the boundaries at a given level, an efficient way for enhancing large structures in 3D images is presented. In our approach, the partial differential equation defining the evolution of the intensity in the image is solved in an explicit scheme at multiple resolutions in an ascending-descending cycle. Intensity 'flux' between distant voxels is allowed, while preserving borders relative to the scale. Experiments have been performed both with phantoms and with real data from 3D Transrectal Ultrasound Imaging. The effectiveness of the method to remove speckle noise and to enhance large structures such as the prostate has been demonstrated. For instance, using two scales reduces the computation time by 87% as compared to a single scale. Furthermore, we show that the boundaries of the prostate are mainly preserved, by comparing with manually outlined edges

    Lesion boundary segmentation using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We implement the level set using a fast upwind scheme and compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician marked-up boundaries as ground truth

    A Data-Driven Edge-Preserving D-bar Method for Electrical Impedance Tomography

    Full text link
    In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known \emph{a priori} that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called {\em CGO sinogram}. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.Comment: 24 pages, 11 figure

    Super-resolution MRI Using Finite Rate of Innovation Curves

    Full text link
    We propose a two-stage algorithm for the super-resolution of MR images from their low-frequency k-space samples. In the first stage we estimate a resolution-independent mask whose zeros represent the edges of the image. This builds off recent work extending the theory of sampling signals of finite rate of innovation (FRI) to two-dimensional curves. We enable its application to MRI by proposing extensions of the signal models allowed by FRI theory, and by developing a more robust and efficient means to determine the edge mask. In the second stage of the scheme, we recover the super-resolved MR image using the discretized edge mask as an image prior. We evaluate our scheme on simulated single-coil MR data obtained from analytical phantoms, and compare against total variation reconstructions. Our experiments show improved performance in both noiseless and noisy settings.Comment: Conference paper accepted to ISBI 2015. 4 pages, 2 figure
    • …
    corecore