1,724 research outputs found

    FUSQA: Fetal Ultrasound Segmentation Quality Assessment

    Full text link
    Deep learning models have been effective for various fetal ultrasound segmentation tasks. However, generalization to new unseen data has raised questions about their effectiveness for clinical adoption. Normally, a transition to new unseen data requires time-consuming and costly quality assurance processes to validate the segmentation performance post-transition. Segmentation quality assessment efforts have focused on natural images, where the problem has been typically formulated as a dice score regression task. In this paper, we propose a simplified Fetal Ultrasound Segmentation Quality Assessment (FUSQA) model to tackle the segmentation quality assessment when no masks exist to compare with. We formulate the segmentation quality assessment process as an automated classification task to distinguish between good and poor-quality segmentation masks for more accurate gestational age estimation. We validate the performance of our proposed approach on two datasets we collect from two hospitals using different ultrasound machines. We compare different architectures, with our best-performing architecture achieving over 90% classification accuracy on distinguishing between good and poor-quality segmentation masks from an unseen dataset. Additionally, there was only a 1.45-day difference between the gestational age reported by doctors and estimated based on CRL measurements using well-segmented masks. On the other hand, this difference increased and reached up to 7.73 days when we calculated CRL from the poorly segmented masks. As a result, AI-based approaches can potentially aid fetal ultrasound segmentation quality assessment and might detect poor segmentation in real-time screening in the future.Comment: 13 pages, 3 figures, 3 table

    Automating assessment of human embryo images and time-lapse sequences for IVF treatment

    Get PDF
    As the number of couples using In Vitro Fertilization (IVF) treatment to give birth increases, so too does the need for robust tools to assist embryologists in selecting the highest quality embryos for implantation. Quality scores assigned to embryonic structures are critical markers for predicting implantation potential of human blastocyst-stage embryos. Timing at which embryos reach certain cell and development stages in vitro also provides valuable information about their development progress and potential to become a positive pregnancy. The current workflow of grading blastocysts by visual assessment is susceptible to subjectivity between embryologists. Visually verifying when embryo cell stage increases is tedious and confirming onset of later development stages is also prone to subjective assessment. This thesis proposes methods to automate embryo image and time-lapse sequence assessment to provide objective evaluation of blastocyst structure quality, cell counting, and timing of development stages

    PRZEGLĄD METOD KLASYFIKACJI OBRAZÓW DERMATOSKOPOWYCH WYKORZYSTYWANYCH W DIAGNOSTYCE ZMIAN SKÓRNYCH

    Get PDF
    The article contains a review of selected classification methods of dermatoscopic images with human skin lesions, taking into account various stages of dermatological disease. The described algorithms are widely used in the diagnosis of skin lesions, such as artificial neural networks (CNN, DCNN), random forests, SVM, kNN classifier, AdaBoost MC and their modifications. The effectiveness, specificity and accuracy of classifications based on the same data sets were also compared and analyzed.Artykuł zawiera przegląd wybranych metod klasyfikacji obrazów dermatoskopowych zmian skórnych człowieka z uwzględnieniem różnych etapów choroby dermatologicznej. Opisane algorytmy są szeroko wykorzystywane w diagnostyce zmian skórnych, takie jak sztuczne sieci neuronowe (CNN, DCNN), random forests, SVM, klasyfikator kNN, AdaBoost MC i ich modyfikacje. Porównana i przeanalizowana została również skuteczność, specyficznośc i dokładność klasyfikatów w oparciu o te same zestawy danych

    Enhanced Deep Learning Models for Efficient Stroke Detection Using MRI Brain Imagery

    Get PDF
    Deep learning models are widely used for solving problems in different applications. Especially Convolutional Neural Network (CNN) based models are found suitable for medical image analysis. As brain stroke is increasing in alarming rate, it is essential to have better approaches to detect it in time. Brain MRI is one of the medical imaging technologies widely used for brain imaging.we proposed certain advancements to well-known deep learning models like VGG16, ResNet50 and DenseNet121 for enhancing brain stroke detection performance. These models are optimized based on the brain stroke detection problem in hand as they are not specialized for a specific problem. We proposed an algorithm, named Deep Efficient Stroke Detection (ESD), that exploids enhanced deep learning models in pipeline. The experimental results revealed that there is performance improvement with optimized models. Highest accuracy is achieved by ResNet50 with 95.67%

    Supervised cnn strategies for optical image segmentation and classification in interventional medicine

    Get PDF
    The analysis of interventional images is a topic of high interest for the medical-image analysis community. Such an analysis may provide interventional-medicine professionals with both decision support and context awareness, with the final goal of improving patient safety. The aim of this chapter is to give an overview of some of the most recent approaches (up to 2018) in the field, with a focus on Convolutional Neural Networks (CNNs) for both segmentation and classification tasks. For each approach, summary tables are presented reporting the used dataset, involved anatomical region and achieved performance. Benefits and disadvantages of each approach are highlighted and discussed. Available datasets for algorithm training and testing and commonly used performance metrics are summarized to offer a source of information for researchers that are approaching the field of interventional-image analysis. The advancements in deep learning for medical-image analysis are involving more and more the interventional-medicine field. However, these advancements are undeniably slower than in other fields (e.g. preoperative-image analysis) and considerable work still needs to be done in order to provide clinicians with all possible support during interventional-medicine procedures
    corecore