6,296 research outputs found

    Automatic segmentation of skin cancer images using adaptive color clustering

    Get PDF
    This paper presents the development of an adaptive image segmentation algorithm designed for the identification of the skin cancer and pigmented lesions in dermoscopy images. The key component of the developed algorithm is the Adaptive Spatial K-Means (A-SKM) clustering technique that is applied to extract the color features from skin cancer images. Adaptive-SKM is a novel technique that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The A-SKM has been included in the development of a flexible color-texture image segmentation scheme and the experimental data indicates that the developed algorithm is able to produce accurate segmentation when applied to a large number of skin cancer (melanoma) images

    Adaptive Segmentation of Knee Radiographs for Selecting the Optimal ROI in Texture Analysis

    Full text link
    The purposes of this study were to investigate: 1) the effect of placement of region-of-interest (ROI) for texture analysis of subchondral bone in knee radiographs, and 2) the ability of several texture descriptors to distinguish between the knees with and without radiographic osteoarthritis (OA). Bilateral posterior-anterior knee radiographs were analyzed from the baseline of OAI and MOST datasets. A fully automatic method to locate the most informative region from subchondral bone using adaptive segmentation was developed. We used an oversegmentation strategy for partitioning knee images into the compact regions that follow natural texture boundaries. LBP, Fractal Dimension (FD), Haralick features, Shannon entropy, and HOG methods were computed within the standard ROI and within the proposed adaptive ROIs. Subsequently, we built logistic regression models to identify and compare the performances of each texture descriptor and each ROI placement method using 5-fold cross validation setting. Importantly, we also investigated the generalizability of our approach by training the models on OAI and testing them on MOST dataset.We used area under the receiver operating characteristic (ROC) curve (AUC) and average precision (AP) obtained from the precision-recall (PR) curve to compare the results. We found that the adaptive ROI improves the classification performance (OA vs. non-OA) over the commonly used standard ROI (up to 9% percent increase in AUC). We also observed that, from all texture parameters, LBP yielded the best performance in all settings with the best AUC of 0.840 [0.825, 0.852] and associated AP of 0.804 [0.786, 0.820]. Compared to the current state-of-the-art approaches, our results suggest that the proposed adaptive ROI approach in texture analysis of subchondral bone can increase the diagnostic performance for detecting the presence of radiographic OA

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Colour Texture analysis

    Get PDF
    This chapter presents a novel and generic framework for image segmentation using a compound image descriptor that encompasses both colour and texture information in an adaptive fashion. The developed image segmentation method extracts the texture information using low-level image descriptors (such as the Local Binary Patterns (LBP)) and colour information by using colour space partitioning. The main advantage of this approach is the analysis of the textured images at a micro-level using the local distribution of the LBP values, and in the colour domain by analysing the local colour distribution obtained after colour segmentation. The use of the colour and texture information separately has proven to be inappropriate for natural images as they are generally heterogeneous with respect to colour and texture characteristics. Thus, the main problem is to use the colour and texture information in a joint descriptor that can adapt to the local properties of the image under analysis. We will review existing approaches to colour and texture analysis as well as illustrating how our approach can be successfully applied to a range of applications including the segmentation of natural images, medical imaging and product inspection

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe
    corecore