81,015 research outputs found

    Antismoking campaigns’ perception and gender differences: a comparison among EEG Indices

    Get PDF
    Human factors’ aim is to understand and evaluate the interactions between people and tasks, technologies, and environment. Among human factors, it is possible then to include the subjective reaction to external stimuli, due to individual’s characteristics and states of mind. These processes are also involved in the perception of antismoking public service announcements (PSAs), the main tool for governments to contrast the first cause of preventable deaths in the world: tobacco addiction. In the light of that, in the present article, it has been investigated through the comparison of different electroencephalographic (EEG) indices a typical item known to be able of influencing PSA perception, that is gender. In order to investigate the neurophysiological underpinnings of such different perception, we tested two PSAs: one with a female character and one with a male character. Furthermore, the experimental sample was divided into men and women, as well as smokers and nonsmokers. The employed EEG indices were the mental engagement (ME: the ratio between beta activity and the sum of alpha and theta activity); the approach/withdrawal (AW: the frontal alpha asymmetry in the alpha band); and the frontal theta activity and the spectral asymmetry index (SASI: the ratio between beta minus theta and beta plus theta). Results suggested that the ME and the AW presented an opposite trend, with smokers showing higher ME and lower AW than nonsmokers. The ME and the frontal theta also evidenced a statistically significant interaction between the kind of the PSA and the gender of the observers; specifically, women showed higher ME and frontal theta activity for the male character PSA. This study then supports the usefulness of the ME and frontal theta for purposes of PSAs targeting on the basis of gender issues and of the ME and the AW and for purposes of PSAs targeting on the basis of smoking habits

    Transverse tripolar spinal cord stimulation: Theoretical performance of a dual channel system

    Get PDF
    A new approach to spinal cord stimulation is presented, by which several serious problems of conventional methods can be solved. A transverse tripolar electrode with a dual-channel voltage stimulator is evaluated theoretically by means of a volume conductor model, combined with nerve fibre models. The simulations predict that a high degree of freedom in the control of activation of dorsal spinal pathways may be obtained with the described system. This implies an easier control of paraesthesia coverage of skin areas and the possibility to correct undesired paraesthesia patterns, caused by lead migration, tissue growth, or anatomical asymmetries, for example, without surgical intervention. It will also be possible to preferentially activate either dorsal column or dorsal root fibres, which has some important clinical advantages. Compared to conventional stimulation systems, the new system has a relatively high current drain

    2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)

    Get PDF
    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/

    Non-Newtonian Rheology in Blood Circulation

    Full text link
    Blood is a complex suspension that demonstrates several non-Newtonian rheological characteristics such as deformation-rate dependency, viscoelasticity and yield stress. In this paper we outline some issues related to the non-Newtonian effects in blood circulation system and present modeling approaches based mostly on the past work in this field.Comment: 26 pages, 5 figures, 2 table
    corecore