51 research outputs found

    Analysis of QoS Requirements for e-Health Services and Mapping to Evolved Packet System QoS Classes

    Get PDF
    E-Health services comprise a broad range of healthcare services delivered by using information and communication technology. In order to support existing as well as emerging e-Health services over converged next generation network (NGN) architectures, there is a need for network QoS control mechanisms that meet the often stringent requirements of such services. In this paper, we evaluate the QoS support for e-Health services in the context of the Evolved Packet System (EPS), specified by the Third Generation Partnership Project (3GPP) as a multi-access all-IP NGN. We classify heterogeneous e-Health services based on context and network QoS requirements and propose a mapping to existing 3GPP QoS Class Identifiers (QCIs) that serve as a basis for the class-based QoS concept of the EPS. The proposed mapping aims to provide network operators with guidelines for meeting heterogeneous e-Health service requirements. As an example, we present the QoS requirements for a prototype e-Health service supporting tele-consultation between a patient and a doctor and illustrate the use of the proposed mapping to QCIs in standardized QoS control procedures

    Open-Source Telemedicine Platform for Wireless Medical Video Communication

    Get PDF
    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Telesonography In Emergency Medicine : A Systematic Review

    Get PDF
    Funding: No specific funding was received for this work; however LE’s salary was paid from funding for the SatCare trial into remotely supported prehospital ultrasound, provided by the European Space Agency in collaboration with ViaSat (contract SC16005). The specific roles of this author are articulated in the ‘author contributions’ section. These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Mathematical modelling of end-to-end packet delay in multi-hop wireless networks and their applications to qos provisioning

    Get PDF
    This thesis addresses the mathematical modelling of end-to-end packet delay for Quality of Service (QoS) provisioning in multi-hop wireless networks. The multi-hop wireless technology increases capacity and coverage in a cost-effective way and it has been standardised in the Fourth-Generation (4G) standards. The effective capacity model approximates end-to-end delay performances, including Complementary Cumulative Density Function (CCDF) of delay, average delay and jitter. This model is first tested using Internet traffic trace from a real gigabit Ethernet gateway. The effective capacity model is developed based on single-hop and continuous-time communication systems but a multi-hop wireless system is better described to be multi-hop and time-slotted. The thesis extends the effective capacity model by taking multi-hop and time-slotted concepts into account, resulting in two new mathematical models: the multi-hop effective capacity model for multi-hop networks and the mixed continuous/discrete-time effective capacity model for time-slotted networks. Two scenarios are considered to validate these two effective capacity-based models based on ideal wireless communications (the physical-layer instantaneous transmission rate is the Shannon channel capacity): 1) packets traverse multiple wireless network devices and 2) packets are transmitted to or received from a wireless network device every Transmission Time Interval (TTI). The results from these two scenarios consistently show that the new mathematical models developed in the thesis characterise end-to-end delay performances accurately. Accurate and efficient estimators for end-to-end packet delay play a key role in QoS provisioning in modern communication systems. The estimators from the new effective capacity-based models are directly tested in two systems, faithfully created using realistic simulation techniques: 1) the IEEE 802.16-2004 networks and 2) wireless tele-ultrasonography medical systems. The results show that the estimation and simulation results are in good agreement in terms of end-to-end delay performances

    Video Streaming Over WIMAX with Ant Colony Optimization for Health Applications

    Get PDF
    ABSTRACT: This paper presents a new proficiency WiMAX embodies the IEE 802.16 family of standards, providing wireless broadband access. With IEEE 802.16e, the mobility amendment and WiMAX guarantees to address the ever-increasing demand of mobile high-speed wireless data in fourth generation (4G) networks. In the existing work, video distribution has been considered as a basic technique that involves scheduling and content-aware video streaming since the video is transmitted as different frames there is a chance of getting either mismatched frames at the receiver or loss of frames owing to incorrect threading of the video frames. Due to these reasons, the expected throughput may not be obtained ,to improve the quality of service and to overcome this ailment, the proposed work establish the Ant colony optimization(ACO) prototype.ACO algorithm includes two mechanism: trail evaporation and deamon actions which acts effectively to trigger the accumulation of data being collected at the receiver end. This marches to provide desired QOS and throughput especially in the trait of medical application

    Multilayer perceptron neural network-based QoS-aware, content-aware and device-aware QoE prediction model : a proposed prediction model for medical ultrasound streaming over small cell networks

    Get PDF
    This paper presents a QoS-aware, content-aware and device-aware non-intrusive medical QoE (m-QoE) prediction model over small cell networks. The proposed prediction model utilises a Multilayer Perceptron (MLP) neural network to predict m-QoE. It also acts as a platform to maintain and optimise the acceptable diagnostic quality through a device-aware adaptive video streaming mechanism. The proposed model is trained for an unseen dataset of input variables such as QoS, content features, and display device characteristics, to produce an output value in the form of m-QoE (i.e. MOS). The efficiency of the proposed model is validated through subjective tests carried by medical experts. The prediction accuracy obtained via the correlation coefficient and Root Mean-Square-Error (RMSE) indicates that the proposed model succeeds in measuring m-QoE closer to the visual perception of the medical experts. Furthermore, we have addressed the following two main research questions: (1) How significant is ultrasound video content type in determining m-QoE? and (2) How much of a role does the screen size and device resolution play in medical experts’ diagnostic experience? The former is answered through the content classification of ultrasound video sequences based on their spatio-temporal features, by including these features in the proposed prediction model, and validating their significance through medical experts’ subjective ratings. The latter is answered by conducting a novel subjective experiment of the ultrasound video sequences across multiple devices

    Flexible Macroblock Ordering for Context-Aware Ultrasound Video Transmission over Mobile WiMAX

    Get PDF
    The most recent network technologies are enabling a variety of new applications, thanks to the provision of increased bandwidth and better management of Quality of Service. Nevertheless, telemedical services involving multimedia data are still lagging behind, due to the concern of the end users, that is, clinicians and also patients, about the low quality provided. Indeed, emerging network technologies should be appropriately exploited by designing the transmission strategy focusing on quality provision for end users. Stemming from this principle, we propose here a context-aware transmission strategy for medical video transmission over WiMAX systems. Context, in terms of regions of interest (ROI) in a specific session, is taken into account for the identification of multiple regions of interest, and compression/transmission strategies are tailored to such context information. We present a methodology based on H.264 medical video compression and Flexible Macroblock Ordering (FMO) for ROI identification. Two different unequal error protection methodologies, providing higher protection to the most diagnostically relevant data, are presented

    An eHealth-Care Driven Perspective on 5G Networks and Infrastructure

    Get PDF
    This work describes the advancements that next generation mobile networks can bring to emergency services on the basis of a fully 5G enabled medical emergency response scenario. An ambulance service combining autonomous driving, advanced on-board patient monitoring, remote diagnosis and remote control from the hospital is introduced, allowing increased levels of care during patient transport and improved early diagnosis, thus enhancing patient survival rates. Furthermore, it is shown that such an ambulance service requires a variety of different traffic types that can only be supported concurrently and with guaranteed quality of service by a high-performance network fulfilling all 5G key performance indicators. The scenario described combines a multitude of aspects and applications enabled by 5G mobile communications, including autonomous driving, ultra-high definition video streaming, tactile remote interaction and continuous sensing, into a compelling showcase for a 5G enabled future. A centralized radio access 5G network with space division multiplexed optical fronthaul using analog radio-over-fiber and optical beamforming is analyzed, fully supporting SDN and NFV for advanced network slicing and quality of service guarantee.</p
    corecore