7,170 research outputs found

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI
    • …
    corecore