5,515 research outputs found

    An Infectious Disease Prediction Method Based on K-Nearest Neighbor Improved Algorithm

    Get PDF
    With the continuous development of medical information construction, the potential value of a large amount of medical information has not been exploited. Excavate a large number of medical records of outpatients, and train to generate disease prediction models to assist doctors in diagnosis and improve work efficiency.This paper proposes a disease prediction method based on k-nearest neighbor improvement algorithm from the perspective of patient similarity analysis. The method draws on the idea of clustering, extracts the samples near the center point generated by the clustering, applies these samples as a new training sample set in the K-nearest neighbor algorithm; based on the maximum entropy The K-nearest neighbor algorithm is improved to overcome the influence of the weight coefficient in the traditional algorithm and improve the accuracy of the algorithm. The real experimental data proves that the proposed k-nearest neighbor improvement algorithm has better accuracy and operational efficiency

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE
    • …
    corecore