4,378 research outputs found

    Establishing an Internet Based Paediatric Cancer Registration and Communication System for the Hungarian Paediatric Oncology Network

    Get PDF
    Cancer registration has developed in Europe over the last 50 years, and in the last decade intensive joint activities between the European Cancer Registries, in response to the need of pan-European harmonization of registration practices, have taken place. The Hungarian Paediatric Cancer Registry has been functioning as the database of the Hungarian Paediatric Oncology Network since 1971, aiming to follow the incidence and the treatment efficacy of malignant diseases.The goals of this globally unique open source information system are the following: 1) to raise the quality of the registration system to the European level by developing an Internet-based registration and communication system, modernizing the database, establishing automatic statistical analyses and adding an Internet website, 2) to support clinical epidemiological studies that we conduct with international collaborators on detailed analyses of the characteristics of patients and their diseases, evaluation of new diagnostic and therapeutic methods, prevention programs, and long-term quality of life and side effects.The benefits of the development of the Internet-based registration and communication system are as follows: a) introduction of an Internet-based case reporting system, b) modernization of the registry database according to international recommendations, c) automatic statistical summaries, encrypted mail systems, document repository, d) application of data security and privacy standards, e) establishment of a website and compilation of educational materials.The overall objective of this scientific project is to contribute towards the improvement of cancer prevention and cancer care for the benefit of the public in general and of cancer patients in particular

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    Consortium framework using blockchain for asthma healthcare in pandemics

    Get PDF
    Producción CientíficaAsthma is a deadly disease that affects the lungs and air supply of the human body. Coronavirus and its variants also affect the airways of the lungs. Asthma patients approach hospitals mostly in a critical condition and require emergency treatment, which creates a burden on health institutions during pandemics. The similar symptoms of asthma and coronavirus create confusion for health workers during patient handling and treatment of disease. The unavailability of patient history to physicians causes complications in proper diagnostics and treatments. Many asthma patient deaths have been reported especially during pandemics, which necessitates an efficient framework for asthma patients. In this article, we have proposed a blockchain consortium healthcare framework for asthma patients. The proposed framework helps in managing asthma healthcare units, coronavirus patient records and vaccination centers, insurance companies, and government agencies, which are connected through the secure blockchain network. The proposed framework increases data security and scalability as it stores encrypted patient data on the Interplanetary File System (IPFS) and keeps data hash values on the blockchain. The patient data are traceable and accessible to physicians and stakeholders, which helps in accurate diagnostics, timely treatment, and the management of patients. The smart contract ensures the execution of all business rules. The patient profile generation mechanism is also discussed. The experiment results revealed that the proposed framework has better transaction throughput, query delay, and security than existing solutions

    EHRaS: Electronic Healthcare Record Management for Ad Hoc Settlements

    Get PDF
    Providing reliable and accurate healthcare to refugees in an ad hoc setting can be challenging for a variety of reasons, and most settlements currently utilize little to no record keeping for patients. EHRaS, our mobile-first electronic healthcare record management system, can provide an inexpensive electronic healthcare record (EHR) solution that is flexible in last-mile applications where infrastructure and technical support is at a minimum. By utilizing NFC technology, novel caching practices, and an extensible interface, our system not only securely identifies patients and authorizes staff to access sensitive medical data, but generally provides a competitive, low-overhead alternative to other open source EHR systems

    The Impact of Medicare Insurance Plans upon Healthcare Services Utilization Considering Patients\u27 Characteristics and Their Access to Medical Care

    Get PDF
    The annual average cost of healthcare for services utilization by a Medicare beneficiary is projected to grow from about 10,000toover10,000 to over 16,000 by 2023. As an ongoing initiative to address this trend, the federal government contracts with private insurance companies and other entities, called Medicare Advantage Organizations (MAOs), to develop and administer alternative health insurance plans designed to contain service utilization and costs. One feature of some Medicare Advantage plans is the presence of risk-bearing contracts with primary care physician organizations that voluntarily accept financial responsibility for the overall cost of care for patients attributed to them. In this arrangement, the MAO delegates medical care, care management oversight, and discretionary spending authority to the physician organization. For services rendered, the physician organization accepts as payment the surplus or deficit derived from annual budgetary results (as negotiated in their contract with the MAO) rather than the traditional per-encounter or service-specific payments associated with fee-for-service payment schemes. This study uses an extensive and novel data set from the Centers for Medicare and Medicaid Services, as well as third-party sources, to examine how Missouri beneficiary’s attributes (age, gender, race, and health status), presumed financial resources and education, access to doctors and hospitals, and Medicare plan choices help to predict services utilization. We use summary statistics, tests of differences in means, CHAID decision trees, and Poisson regression to analyze beneficiaries’ utilization of five service categories (inpatient care, skilled nursing care, outpatient services, home health services, and other provider services, including physicians). The study reveals three critical findings. First, specific beneficiary attributes such as age and race, and beneficiary access to doctors and hospitals, are predictors of one’s chosen Medicare plan. Notably, some Medicare beneficiary groups are more likely to enroll in a Medicare Advantage plan rather than others. Second, beneficiary characteristics, doctor and hospital access, and plan choice collectively have a strong association with service utilization. Those enrolled in Medicare Advantage plans use fewer services than their Traditional Medicare counterparts. Lastly, beneficiaries enrolled in a Medicare Advantage plan that engages risk-bearing primary care physician groups use fewer services than beneficiaries in other plans

    Is Blockchain for Internet of Medical Things a Panacea for COVID-19 Pandemic?

    Full text link
    The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.Comment: 15 pages, 8 figure

    Mobile SARS‑CoV‑2 screening facilities for rapid deployment and university-based diagnostic laboratory

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions’ continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios

    A Novel System for Confidential Medical Data Storage Using Chaskey Encryption and Blockchain Technology

    Get PDF
    يعد التخزين الآمن للمعلومات الطبية السرية أمرًا بالغ الأهمية لمنظمات الرعاية الصحية التي تسعى إلى حماية خصوصية المريض والامتثال للمتطلبات التنظيمية. في هذا البحث، نقدم نظامًا جديدًا للتخزين الآمن للبيانات الطبية باستخدام تقنية تشفير Chaskey و blockchain. يستخدم النظام تشفير Chaskey لضمان سرية وسلامة البيانات الطبية، وتكنولوجيا blockchain لتوفير حلول تخزين البيانات الطبية بحيث يكون قابل للتطوير ويتميز باللامركزية. يستخدم النظام أيضًا تقنيات Bflow للتجزئة ومنها التجزئة الرأسية لتعزيز قابلية التوسع وإدارة البيانات المخزنة. بالإضافة إلى ذلك، يستخدم النظام العقود الذكية لفرض سياسات التحكم في الوصول والتدابير الأمنية الأخرى. سنقدم وصف للنظام المقترح بالتفصيل ونقدم تحليلاً لخصائصه الأمنية والأداء. تظهر نتائجنا أن النظام يوفر حلاً آمنًا للغاية وقابل للتطوير لتخزين البيانات الطبية السرية، مع تطبيقات محتملة في مجموعة واسعة من إعدادات الرعاية الصحية.Secure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and provide an analysis of its security and performance characteristics. The resulting images were tested against a number of important metrics such as Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), bit error rate (BER), Signal-to-Noise Ratio (SNR), Normalization Correlation (NC) and Structural Similarity Index (SSIM). Our results showing that the system provides a highly secure and scalable solution for storing confidential medical data, with potential applications in a wide range of healthcare settings
    corecore