21,576 research outputs found

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    The Hardness of Approximation of Euclidean k-means

    Get PDF
    The Euclidean kk-means problem is a classical problem that has been extensively studied in the theoretical computer science, machine learning and the computational geometry communities. In this problem, we are given a set of nn points in Euclidean space RdR^d, and the goal is to choose kk centers in RdR^d so that the sum of squared distances of each point to its nearest center is minimized. The best approximation algorithms for this problem include a polynomial time constant factor approximation for general kk and a (1+ϵ)(1+\epsilon)-approximation which runs in time poly(n)2O(k/ϵ)poly(n) 2^{O(k/\epsilon)}. At the other extreme, the only known computational complexity result for this problem is NP-hardness [ADHP'09]. The main difficulty in obtaining hardness results stems from the Euclidean nature of the problem, and the fact that any point in RdR^d can be a potential center. This gap in understanding left open the intriguing possibility that the problem might admit a PTAS for all k,dk,d. In this paper we provide the first hardness of approximation for the Euclidean kk-means problem. Concretely, we show that there exists a constant ϵ>0\epsilon > 0 such that it is NP-hard to approximate the kk-means objective to within a factor of (1+ϵ)(1+\epsilon). We show this via an efficient reduction from the vertex cover problem on triangle-free graphs: given a triangle-free graph, the goal is to choose the fewest number of vertices which are incident on all the edges. Additionally, we give a proof that the current best hardness results for vertex cover can be carried over to triangle-free graphs. To show this we transform GG, a known hard vertex cover instance, by taking a graph product with a suitably chosen graph HH, and showing that the size of the (normalized) maximum independent set is almost exactly preserved in the product graph using a spectral analysis, which might be of independent interest

    Bucolic Complexes

    Full text link
    We introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. They are defined as simply connected prism complexes satisfying some local combinatorial conditions. We study various approaches to bucolic complexes: from graph-theoretic and topological perspective, as well as from the point of view of geometric group theory. In particular, we characterize bucolic complexes by some properties of their 2-skeleta and 1-skeleta (that we call bucolic graphs), by which several known results are generalized. We also show that locally-finite bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties.Comment: 45 pages, 4 figure

    On a class of intersection graphs

    Full text link
    Given a directed graph D = (V,A) we define its intersection graph I(D) = (A,E) to be the graph having A as a node-set and two nodes of I(D) are adjacent if their corresponding arcs share a common node that is the tail of at least one of these arcs. We call these graphs facility location graphs since they arise from the classical uncapacitated facility location problem. In this paper we show that facility location graphs are hard to recognize and they are easy to recognize when the graph is triangle-free. We also determine the complexity of the vertex coloring, the stable set and the facility location problems on that class

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    Nice labeling problem for event structures: a counterexample

    Full text link
    In this note, we present a counterexample to a conjecture of Rozoy and Thiagarajan from 1991 (called also the nice labeling problem) asserting that any (coherent) event structure with finite degree admits a labeling with a finite number of labels, or equivalently, that there exists a function f:NNf: \mathbb{N} \mapsto \mathbb{N} such that an event structure with degree n\le n admits a labeling with at most f(n)f(n) labels. Our counterexample is based on the Burling's construction from 1965 of 3-dimensional box hypergraphs with clique number 2 and arbitrarily large chromatic numbers and the bijection between domains of event structures and median graphs established by Barth\'elemy and Constantin in 1993

    Groups acting on quasi-median graphs. An introduction

    Get PDF
    Quasi-median graphs have been introduced by Mulder in 1980 as a generalisation of median graphs, known in geometric group theory to naturally coincide with the class of CAT(0) cube complexes. In his PhD thesis, the author showed that quasi-median graphs may be useful to study groups as well. In the present paper, we propose a gentle introduction to the theory of groups acting on quasi-median graphs.Comment: 16 pages. Comments are welcom
    corecore