428 research outputs found

    Consensus image method for unknown noise removal

    Get PDF
    Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.This work is supported by the European Commission under Contract No. 238819 (MIBISOC Marie Curie ITN). H. Bustince was supported by Project TIN 2010-15055 of the Spanish Ministry of Science

    Use of idempotent functions in the aggregation of different filters for noise removal

    Get PDF
    The majority of existing denoising algorithms obtain good results for a specific noise model, and when it is known previously. Nonetheless, there is a lack in denoising algorithms that can deal with any unknown noisy images. Therefore, in this paper, we study the use of aggregation functions for denoising purposes, where the noise model is not necessary known in advance; and how these functions affect the visual and quantitative results of the resultant images

    Computing the output distribution and selection probabilities of a stack filter from the DNF of its positive Boolean function

    Full text link
    Many nonlinear filters used in practise are stack filters. An algorithm is presented which calculates the output distribution of an arbitrary stack filter S from the disjunctive normal form (DNF) of its underlying positive Boolean function. The so called selection probabilities can be computed along the way.Comment: This is the version published in Journal of Mathematical Imaging and Vision, online first, 1 august 201

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    Flat zones filtering, connected operators, and filters by reconstruction

    Get PDF
    This correspondence deals with the notion of connected operators. Starting from the definition for operator acting on sets, it is shown how to extend it to operators acting on function. Typically, a connected operator acting on a function is a transformation that enlarges the partition of the space created by the flat zones of the functions. It is shown that from any connected operator acting on sets, one can construct a connected operator for functions (however, it is not the unique way of generating connected operators for functions). Moreover, the concept of pyramid is introduced in a formal way. It is shown that, if a pyramid is based on connected operators, the flat zones of the functions increase with the level of the pyramid. In other words, the flat zones are nested. Filters by reconstruction are defined and their main properties are presented. Finally, some examples of application of connected operators and use of flat zones are described.Peer ReviewedPostprint (published version

    Digital Morphometry : A Taxonomy Of Morphological Filters And Feature Parameters With Application To Alzheimer\u27s Disease Research

    Get PDF
    In this thesis the expression digital morphometry collectively describes all those procedures used to obtain quantitative measurements of objects within a two-dimensional digital image. Quantitative measurement is a two-step process: the application of geometrical transformations to extract the features of interest, and then the actual measurement of these features. With regard to the first step the morphological filters of mathematical morphology provide a wealth of suitable geometric transfomations. Traditional radiometric and spatial enhancement techniques provide an additional source of transformations. The second step is more classical (e.g. Underwood, 1970; Bookstein, 1978; and Weibull, 1980); yet here again mathematical morphology is applicable - morphologically derived feature parameters. This thesis focuses on mathematical morphology for digital morphometry. In particular it proffers a taxonomy of morphological filters and investigates the morphologically derived feature parameters (Minkowski functionals) for digital images sampled on a square grid. As originally conceived by Georges Matheron, mathematical morphology concerns the analysis of binary images by means of probing with structuring elements [typically convex geometric shapes] (Dougherty, 1993, preface). Since its inception the theory has been extended to grey-level images and most recently to complete lattices. It is within the very general framework of the complete lattice that the taxonomy of morphological filters is presented. Examples are provided to help illustrate the behaviour of each type of filter. This thesis also introduces DIMPAL (Mehnert, 1994) - a PC-based image processing and analysis language suitable for researching and developing algorithms for a wide range of image processing applications. Though DIMPAL was used to produce the majority of the images in this thesis it was principally written to provide an environment in which to investigate the application of mathematical morphology to Alzheimer\u27s disease research. Alzheimer\u27s disease is a form of progressive dementia associated with the degeneration of the brain. It is the commonest type of dementia and probably accounts for half the dementia of old age (Forsythe, 1990, p. 21 ). Post mortem examination of the brain reveals the presence of characteristic neuropathologic lesions; namely neuritic plaques and neurofibrillary tangles. They occur predominantly in the cerebral cortex and hippocampus. Quantitative studies of the distribution of plaques and tangles in normally aged and Alzheimer brains are hampered by the enormous amount of time and effort required to count and measure these lesions. Here in a morphological algorithm is proposed for the automatic segmentation and measurement of neuritic plaques from light micrographs of post mortem brain tissue

    Self-dual morphological operators and filters

    Get PDF
    • …
    corecore