2 research outputs found

    Leksell Gamma Knife Treatment Planning via Kernel Regression Data Mining Initialization and Genetic Algorithm Optimization

    Get PDF
    Gamma Knife is a medical procedure that is used to treat several types of intracranial disease. The system utilizes gamma rays from Cobalt-60 radiation sources focused at an isocenter and a stereotactic frame system that serves as an immobilization device coordinate system. Treatment is performed by localizing the patient’s disease with a medical imaging study and positioning the diseased area at the focused intersection of the beams. Patient treatment may require multiple treatment positions and varying beam sizes. The treatment position, time, and beam size is determined through a treatment planning process. Traditionally Gamma Knife treatment planning is performed manually by an expert planner. This process can be time consuming and arrival at an optimal plan may depend on the skill of the planner. This work automates the treatment planning process with a multi-module optimization system. First, a kernel regression data mining module compares the treatment volume to a database of past treatment plans to create a set of initial plans. These plans seed a genetic algorithm optimizer that produces an optimized plan. The cost function for the optimization is a weighted average of several traditional metric for assessing stereotactic radiosurgery plan quality. A gradient descent optimizer is utilized to further refine the optimized treatment plan. The developed system was applied to three Gamma Knife planning cases; a solitary metastasis, an acoustic schwannoma, and a pituitary adenoma. The system produced an average percent isodose coverage for the three plans of 94.5% and the average Paddick Conformity index was 0.76 in an average time of 17.16 minutes for the three plans. The system was compared to an expert planner and an optimizer included with the Gamma Knife planning software. The developed system and expert planner performance was essentially equivalent (average percent isodose coverage 95.8%, average Paddick Conformity index 0.70, optimization time 20.52). The developed system performed much better than the Gamma Plan optimizer (average percent isodose coverage 85.8%, average Paddick Conformity index 0.71) however the Gamma Plan optimizer result was obtained quicker (optimization time about 1 minute). The developed system can be utilized for efficient high-quality Gamma Knife treatment planning

    Parallel versus iterated: comparing population oriented and chained sequential simulated annealing approaches to cost-based abduction

    Get PDF
    Stochastic search techniques are used to solve NP-hard combinatorial optimization problems. Simulated annealing, genetic algorithms and hybridization of both, all attempt to find the best solution with minimal cost and time. Guided Evolutionary Simulated Annealing is one technique of such hybridization. It is based on evolutionary programming where a number of simulated annealing chains are working in a generation to find the optimum solution for a problem. Abduction is the problem of finding the best explanation to a given set of observations. In AI, this has been modeled by a set of hypotheses that need to be assumed to prove the observation or goal. Cost-Based Abduction (CBA) associates a cost to each hypothesis. It is an example of an NP-hard problem, where the objective is to minimize the cost of the assumed hypotheses to prove the goal. Analyzing the search space of a problem is one way of understanding its nature and categorizing it into straightforward, misleading or difficult for genetic algorithms. Fitness-Distance Correlation and Fitness-Distance plots are helpful tools in such analysis. This thesis examines solving the CBA problem using Simulated Annealing and Guided Evolutionary Simulated Annealing and analyses the Fitness-Distance landscape of some Cost-Based abduction problem instances
    corecore