131 research outputs found

    An Analysis of Sampling Effect on the Absolute Stability of Discrete-time Bilateral Teleoperation Systems

    Full text link
    Absolute stability of discrete-time teleoperation systems can be jeopardized by choosing inappropriate sampling time architecture. A modified structure is presented for the bilateral teleoperation system including continuous-time slave robot, master robot, human operator, and the environment with sampled-data PD-like + dissipation controllers which make the system absolute stable in the presence of the time delay and sampling rates in the communication network. The output position and force signals are quantized with uniform sampling periods. Input-delay approach is used in this paper to convert the sampled-data system to a continuous-time counterpart. The main contribution of this paper is calculating a lower bound on the maximum sampling period as a stability condition. Also, the presented method imposes upper bounds on the damping of robots and notifies the sampling time importance on the transparency and stability of the system. Both simulation and experimental results are performed to show the validity of the proposed conditions and verify the effectiveness of the sampling scheme

    Haptic feedback control designs in teleoperation systems for minimal invasive surgery

    Get PDF

    A novel approach to micro-telemanipulation with soft slave robots: integrated design of a non-overshooting series elastic actuator

    Get PDF
    Micro mechanical devices are becoming ubiquitous as they find increas- ing uses in applications such as micro-fabrication, micro-surgery and micro- probing. Use of micro-electromechanical systems not only offer compactness and precision, but also increases the efficiency of processes. Whenever me- chanical devices are used to interact with the environment, accurate control of the forces arising at the interaction surfaces arise as an important chal- lenge. In this work, we propose using a series elastic actuation (SEA) for micro- manipulation. Since an SEA is an integrated mechatronic device, the me- chanical design and controller synthesis are handled in parallel to achieve the best overall performance. The mechanical design of the ÎĽSEA is handled in two steps: type selection and dimensional synthesis. In the type selection step, a compliant, half pantograph mechanism is chosen as the underlying kinematic structure of the coupling element. For optimal dimensioning, the bandwidth of the system, the disturbance response and the force resolution are considered to achieve good control performance with high reliability. These objectives are achieved by optimizing the manipulability and the stiffness of the mechanism along with a robustness constraint. In parallel with the mechanical design, a force controller is synthesized. The controller has a cascaded structure: an inner loop for position control and an outer loop for force control. Since excess force application can be detrimental during manipulation of fragile objects; the position controller of the inner loop is designed to be a non-overshooting controller which guar- antees the force response of the system always stay lower than the reference value. This self-standing ÎĽSEA system is embedded into a 3-channel scaled tele- operation architecture so that an operator can perform micro-telemanipulation. Constant scaling between the master and the slave is implemented and the teleoperator controllers preserve the non-overshooting nature of the ÎĽSEA. Finally, the designed ÎĽSEA based micro-telemanipulation system is im- plemented and characterized

    FoReCo: a forecast-based recovery mechanism for real-time remote control of robotic manipulators

    Get PDF
    Wireless communications represent a game changer for future manufacturing plants, enabling flexible production chains as machinery and other components are not restricted to a location by the rigid wired connections on the factory floor. However, the presence of electromagnetic interference in the wireless spectrum may result in packet loss and delay, making it a challenging environment to meet the extreme reliability requirements of industrial applications. In such conditions, achieving real-time remote control, either from the Edge or Cloud, becomes complex. In this paper, we investigate a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses Machine Learning (ML) to infer lost commands caused by interference in the wireless channel. FoReCo is evaluated through both simulation and experimentation in interference prone IEEE 802.11 wireless links, and using a commercial research robot that performs pick-and-place tasks. Results show that in case of interference, FoReCo trajectory error is decreased by x18 and x2 times in simulation and experimentation, and that FoReCo is sufficiently lightweight to be deployed in the hardware of already used in existing solutions.This work has been partially funded by European Union's Horizon 2020 research and innovation programme under grant agreement No 101015956, and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D 6GEDGEDT and 6G-DATADRIVE

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Control of Nonlinear Mechatronic Systems

    Get PDF
    This dissertation is divided into four self-contained chapters. In Chapter 1, an adaptive nonlinear tracking controller for kinematically redundant robot manipulators is presented. Past research efforts have focused on the end-effector tracking control of redundant robots because of their increased dexterity over their non-redundant counterparts. This work utilizes an adaptive full-state feedback quaternion based controller developed in [1] and focuses on the design of a general sub-task controller. This sub-task controller does not affect the position and orientation tracking control objectives, but instead projects a preference on the configuration of the manipulator based on sub-task objectives such as the following: singularity avoidance, joint limit avoidance, bounding the impact forces, and bounding the potential energy. In Chapter 2, two controllers are developed for nonlinear haptic and teleoperator systems for coordination of the master and slave systems. The first controller is proven to yield a semi-global asymptotic result in the presence of parametric uncertainty in the master and the slave dynamic models provided the user and the environmental input forces are measurable. The second controller yields a global asymptotic result despite unmeasurable user and environmental input forces provided the dynamic models of the master and slave systems are known. These controllers rely on a transformation and a flexible target system to allow the master system\u27s impedance to be easily adjusted so that it matches a desired target system. This work also offers a structure to encode a velocity field assist mechanism to provide the user help in controlling the slave system in completing a pre-defined contour following task. For each controller, Lyapunov-based techniques are used to prove that both controllers provide passive coordination of the haptic/teleoperator system when the velocity field assist mechanism is disabled. When the velocity field assist mechanism is enabled, the analysis proves the coordination of the haptic/teleoperator system. Simulation results are presented for both controllers. In Chapter 3, two controllers are developed for flat multi-input/multi-output nonlinear systems. First, a robust adaptive controller is proposed and proven to yield semi-global asymptotic tracking in the presence of additive disturbances and parametric uncertainty. In addition to guaranteeing an asymptotic output tracking result, it is also proven that the parameter estimate vector is driven to a constant vector. In the second part of the chapter, a learning controller is designed and proven to yield a semi-global asymptotic tracking result in the presence of additive disturbances where the desired trajectory is periodic. A continuous nonlinear integral feedback component is utilized in the design of both controllers and Lyapunov-based techniques are used to guarantee that the tracking error is asymptotically driven to zero. Numerical simulation results are presented for both controllers. In Chapter 4, a new dynamic model for continuum robot manipulators is derived. The dynamic model is developed based on the geometric model of extensible continuum robot manipulators with no torsional effects. The development presented in this chapter is an extension of the dynamic model proposed in [2] (by Mochiyama and Suzuki) to include a class of extensible continuum robot manipulators. First, the kinetic energy of a slice of the continuum robot is evaluated. Next, the total kinetic energy of the manipulator is obtained by utilizing a limit operation (i.e., sum of the kinetic energy of all the slices). Then, the gravitational potential energy of the manipulator is derived. Next, the elastic potential energy of the manipulator is derived for both bending and extension. Finally, the dynamic model of a planar 3-section extensible continuum robot manipulator is derived by utilizing the Lagrange representation. Numerical simulation results are presented for a planar 3-section extensible continuum robot manipulator
    • …
    corecore