29 research outputs found

    Audio Perception in Robotic Assistance for Human Space Exploration: A Feasibility Study

    Get PDF
    Future crewed missions beyond low earth orbit will greatly rely on the support of robotic assistance platforms to perform inspection and manipulation of critical assets. This includes crew habitats, landing sites or assets for life support and operation. Maintenance and manipulation of a crewed site in extra-terrestrial environments is a complex task and the system will have to face different challenges during operation. While most may be solved autonomously, in certain occasions human intervention will be required. The telerobotic demonstration mission, Surface Avatar, led by the German Aerospace Center (DLR), with partner European Space Agency (ESA), investigates different approaches offering astronauts on board the International Space Station (ISS) control of ground robots in representative scenarios, e.g. a Martian landing and exploration site. In this work we present a feasibility study on how to integrate auditory information into the mentioned application. We will discuss methods for obtaining audio information and localizing audio sources in the environment, as well as fusing auditory and visual information to perform state estimation based on the gathered data. We demonstrate our work in different experiments to show the effectiveness of utilizing audio information, the results of spectral analysis of our mission assets, and how this information could help future astronauts to argue about the current mission situation

    Model-based operator guidance in interactive, semi-automated production processes

    Get PDF
    This contribution focuses on the task of guiding and supervision of technical processes realized by human operators. The review of publications of the last decades discloses that especially technical processes with strong interconnection of human operator and manufacturing process are not adequately addressed by the evolved automation approaches. Integrating human process knowledge and experience into the resulting automation system is still a major concern. Besides the introduction of automation in a handcrafting process that is increasing the overall system complexity, the design of the human-machine interface to the automation system is of central importance. Within this thesis, the trade-off between manual manufacturing and automation is addressed by a semi-automation approach. The application example is the no-bake molding process, a mold manufacturing process for casts that is traditionally handmade. Within this process the human operator plays a central role (i.e. knowledge and expertise), whereas the (intelligent) automation is carrying out physical operation, which is guided and supervised by the human operator. This is achieved by experimentally identified quality representing process variables that allow for in-process feedback to the human operator. Process guiding assistance is given using a formalization approach of the human-automation-interaction. By deducing situative information of interest from the resulting human-automation-system model with respect to the current process goal, the established process model is used for supervision and assistance of the overall process. The design of the human-machine-interface is based on a detailed analysis of the handcrafted process and is realized as a direct, intuitively usable, marker-based interaction technique. The integrated human-automation-system and the corresponding human-machine-interface with process guidance assistance functionality is initially evaluated. The results are discussed for the future work with respect to the individual, human operator-specific process understanding and process reproducibility.Diese Arbeit befasst sich mit Fachkraftaufgaben in der Führung und Überwachung von technischen Prozessen. Die Übersicht der Publikationen der letzten Jahrzehnte eröffnet, dass insbesondere technische Prozesse mit enger Verknüpfung von Mensch und Herstellungsprozess bei den entwickelten Automatisierungsansätzen nicht hinreichend berücksichtigt werden. Die Integration von Prozesswissen und -erfahrung in das resultierende Automatisierungssystem bleibt eine offene Fragestellung. Neben der Einführung von Automation in Handarbeitsprozesse, die die Komplexität des Gesamtsystems erhöhen, ist die Gestaltung der Mensch-Maschine-Schnittstelle zum Automatisierungssystem von zentraler Bedeutung. Der Konflikt zwischen Handarbeit und Automatisierung wird in dieser Arbeit durch die Einführung einer Teilautomatisierung gelöst. Das Anwendungsbeispiel ist das Kaltharzverfahren, ein traditionell in Handarbeit bewältigter Herstellungsprozess für Gussformen. In diesem Prozess spielt die Fachkraft eine zentrale Rolle (z. B. durch ihr Prozesswissen und ihre Expertise), während die (intelligente) Automatisierung –geführt und überwacht durch die Fachkraft– anfallende physische Aktionen ausführt. Dies wird durch experimentell ermit- telte qualitäts-beschreibende Prozessgrößen erreicht, die eine in-prozess Rückführung zum Bedienpersonal ermöglichen. Prozessführungsassistenz ist basierend auf die Formalisierung der Mensch-Automation-Interaktion gegeben. Durch die Bestimmung von situativen Informationen hoher Wichtigkeit aus dem resultierenden Mensch-Automation-System Modell bezogen auf das aktuelle Prozessziel, wird das bestehende Prozessmodell zur Überwachung und Prozessführungsassistenz des Gesamtprozesses genutzt. Die Gestaltung der Mensch-Maschine-Schnittstelle basiert auf einer detaillierten Analyse des Handarbeitsprozesses und ist als direkte, intuitiv bedienbare, markerbasierte Interaktionstechnik realisiert. Das integrierte Mensch-Automation-System sowie die zugehörige Mensch-Maschine-Schnittstelle inklusive Prozessführungsassistenzfunktionen wurden initial evaluiert. Die erzielten Ergebnisse werden hinsichtlich des individuellen, fachkraftabhängigen Prozesswissens und der Reproduzierbarkeit für den Ausblick diskutiert

    International Workshop on Finite Elements for Microwave Engineering

    Get PDF
    When Courant prepared the text of his 1942 address to the American Mathematical Society for publication, he added a two-page Appendix to illustrate how the variational methods first described by Lord Rayleigh could be put to wider use in potential theory. Choosing piecewise-linear approximants on a set of triangles which he called elements, he dashed off a couple of two-dimensional examples and the finite element method was born. … Finite element activity in electrical engineering began in earnest about 1968-1969. A paper on waveguide analysis was published in Alta Frequenza in early 1969, giving the details of a finite element formulation of the classical hollow waveguide problem. It was followed by a rapid succession of papers on magnetic fields in saturable materials, dielectric loaded waveguides, and other well-known boundary value problems of electromagnetics. … In the decade of the eighties, finite element methods spread quickly. In several technical areas, they assumed a dominant role in field problems. P.P. Silvester, San Miniato (PI), Italy, 1992 Early in the nineties the International Workshop on Finite Elements for Microwave Engineering started. This volume contains the history of the Workshop and the Proceedings of the 13th edition, Florence (Italy), 2016 . The 14th Workshop will be in Cartagena (Colombia), 2018

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Micro/Nano Manufacturing

    Get PDF
    Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies
    corecore