3,966 research outputs found

    Quantized VCG Mechanisms for Polymatroid Environments

    Full text link
    Many network resource allocation problems can be viewed as allocating a divisible resource, where the allocations are constrained to lie in a polymatroid. We consider market-based mechanisms for such problems. Though the Vickrey-Clarke-Groves (VCG) mechanism can provide the efficient allocation with strong incentive properties (namely dominant strategy incentive compatibility), its well-known high communication requirements can prevent it from being used. There have been a number of approaches for reducing the communication costs of VCG by weakening its incentive properties. Here, instead we take a different approach of reducing communication costs via quantization while maintaining VCG's dominant strategy incentive properties. The cost for this approach is a loss in efficiency which we characterize. We first consider quantizing the resource allocations so that agents need only submit a finite number of bids instead of full utility function. We subsequently consider quantizing the agent's bids

    Application of Market Models to Network Equilibrium Problems

    Full text link
    We present a general two-side market model with divisible commodities and price functions of participants. A general existence result on unbounded sets is obtained from its variational inequality re-formulation. We describe an extension of the network flow equilibrium problem with elastic demands and a new equilibrium type model for resource allocation problems in wireless communication networks, which appear to be particular cases of the general market model. This enables us to obtain new existence results for these models as some adjustments of that for the market model. Under certain additional conditions the general market model can be reduced to a decomposable optimization problem where the goal function is the sum of two functions and one of them is convex separable, whereas the feasible set is the corresponding Cartesian product. We discuss some versions of the partial linearization method, which can be applied to these network equilibrium problems.Comment: 18 pages, 3 table
    • …
    corecore