288 research outputs found

    A new class of neural architectures to model episodic memory : computational studies of distal reward learning

    Get PDF
    A computational cognitive neuroscience model is proposed, which models episodic memory based on the mammalian brain. A computational neural architecture instantiates the proposed model and is tested on a particular task of distal reward learning. Categorical Neural Semantic Theory informs the architecture design. To experiment upon the computational brain model, embodiment and an environment in which the embodiment exists are simulated. This simulated environment realizes the Morris Water Maze task, a well established biological experimental test of distal reward learning. The embodied neural architecture is treated as a virtual rat and the environment it acts in as a virtual water tank. Performance levels of the neural architectures are evaluated through analysis of embodied behavior in the distal reward learning task. Comparison is made to biological rat experimental data, as well as comparison to other published models. In addition, differences in performance are compared between the normal and categorically informed versions of the architecture

    Modeling biophysical and neural circuit bases for core cognitive abilities evident in neuroimaging patterns: hippocampal mismatch, mismatch negativity, repetition positivity, and alpha suppression of distractors

    Get PDF
    This dissertation develops computational models to address outstanding problems in the domain of expectation-related cognitive processes and their neuroimaging markers in functional MRI or EEG. The new models reveal a way to unite diverse phenomena within a common framework focused on dynamic neural encoding shifts, which can arise from robust interactive effects of M-currents and chloride currents in pyramidal neurons. By specifying efficient, biologically realistic circuits that achieve predictive coding (e.g., Friston, 2005), these models bridge among neuronal biophysics, systems neuroscience, and theories of cognition. Chapter one surveys data types and neural processes to be examined, and outlines the Dynamically Labeled Predictive Coding (DLPC) framework developed during the research. Chapter two models hippocampal prediction and mismatch, using the DLPC framework. Chapter three presents extensions to the model that allow its application for modeling neocortical EEG genesis. Simulations of this extended model illustrate how dynamic encoding shifts can produce Mismatch Negativity (MMN) phenomena, including pharmacological effects on MMN reported for humans or animals. Chapters four and five describe new modeling studies of possible neural bases for alpha-induced information suppression, a phenomenon associated with active ignoring of stimuli. Two models explore the hypothesis that in simple rate-based circuits, information suppression might be a robust effect of neural saturation states arising near peaks of resonant alpha oscillations. A new proposal is also introduced for how the basal ganglia may control onset and offset of alpha-induced information suppression. Although these rate models could reproduce many experimental findings, they fell short of reproducing a key electrophysiological finding: phase-dependent reduction in spiking activity correlated with power in the alpha frequency band. Therefore, chapter five also specifies how a DLPC model, adapted from the neocortical model developed in chapter three, can provide an expectation-based model of alpha-induced information suppression that exhibits phase-dependent spike reduction during alpha-band oscillations. The model thus can explain experimental findings that were not reproduced by the rate models. The final chapter summarizes main theses, results, and basic research implications, then suggests future directions, including expanded models of neocortical mismatch, applications to artificial neural networks, and the introduction of reward circuitry

    IST Austria Thesis

    Get PDF
    Distinguishing between similar experiences is achieved by the brain in a process called pattern separation. In the hippocampus, pattern separation reduces the interference of memories and increases the storage capacity by decorrelating similar inputs patterns of neuronal activity into non-overlapping output firing patterns. Winners-take-all (WTA) mechanism is a theoretical model for pattern separation in which a "winner" cell suppresses the activity of the neighboring neurons through feedback inhibition. However, if the network properties of the dentate gyrus support WTA as a biologically conceivable model remains unknown. Here, we showed that the connectivity rules of PV+interneurons and their synaptic properties are optimizedfor efficient pattern separation. We found using multiple whole-cell in vitrorecordings that PV+interneurons mainly connect to granule cells (GC) through lateral inhibition, a form of feedback inhibition in which a GC inhibits other GCs but not itself through the activation of PV+interneurons. Thus, lateral inhibition between GC–PV+interneurons was ~10 times more abundant than recurrent connections. Furthermore, the GC–PV+interneuron connectivity was more spatially confined but less abundant than PV+interneurons–GC connectivity, leading to an asymmetrical distribution of excitatory and inhibitory connectivity. Our network model of the dentate gyrus with incorporated real connectivity rules efficiently decorrelates neuronal activity patterns using WTA as the primary mechanism. This process relied on lateral inhibition, fast-signaling properties of PV+interneurons and the asymmetrical distribution of excitatory and inhibitory connectivity. Finally, we found that silencing the activity of PV+interneurons in vivoleads to acute deficits in discrimination between similar environments, suggesting that PV+interneuron networks are necessary for behavioral relevant computations. Our results demonstrate that PV+interneurons possess unique connectivity and fast signaling properties that confer to the dentate gyrus network properties that allow the emergence of pattern separation. Thus, our results contribute to the knowledge of how specific forms of network organization underlie sophisticated types of information processing

    Biophysical modeling to reverse engineer two mammalian neural circuits lower urinar Y tract and hippocampus

    Get PDF
    Computational neuroscience provides tools to abstract and generalize principles of neuronal function using mathematics and computers. This dissertation reports biophysical modeling approaches to facilitate reverse engineering of two mammalian neural circuits - the lower urinary tract for the development of stimulation techniques, and the rodent hippocampus to understand mechanisms involved in theta rhythms. The LUT in mammals consists of the urinary bladder, external urethral sphincter (EUS) and the urethra. Control of the LUT is achieved via a neural circuit which integrates distinct components. Dysfunctions of the lower urinary tract (LUT) are caused by a variety of factors including spinal cord injury and diabetes. Our model builds on previous models by using biologically realistic spiking neurons to reproduce neural control of the LUT in both normal function and dysfunction cases. The hippocampus has long been implicated in memory storage and retrieval. Also, hippocampal theta oscillations (4-12 Hz) are consistently recorded during memory tasks and spatial navigation. Previous model revealed five distinct theta generators. The present study extends the work by probing deeper into the intrinsic theta mechanisms via characterizing the mechanisms as being resonant, i.e., inherently produce theta, or synchronizing, i.e., promote coordinated activity, or possibly both. The role of the neuromodulatory state is also investigated.Includes bibliographical references (pages 157-164)

    Two photon interrogation of hippocampal subregions CA1 and CA3 during spatial behaviour

    Get PDF
    The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and form the neural basis of a cognitive map of space which supports these mnemonic functions. Hebb’s (1949) postulate regarding the creation of cell assemblies is seen as the pre-eminent model of learning in neural systems. Investigating changes to the hippocampal representation of space during an animal’s exploration of its environment provides an opportunity to observe Hebbian learning at the population and single cell level. When exploring new environments animals form spatial memories that are updated with experience and retrieved upon re-exposure to the same environment, but how this is achieved by different subnetworks in hippocampal CA1 and CA3, and how these circuits encode distinct memories of similar objects and events remains unclear. To test these ideas, we developed an experimental strategy and detailed protocols for simultaneously recording from CA1 and CA3 populations with 2P imaging. We also developed a novel all-optical protocol to simultaneously activate and record from ensembles of CA3 neurons. We used these approaches to show that targeted activation of CA3 neurons results in an increasing excitatory amplification seen only in CA3 cells when stimulating other CA3 cells, and not in CA1, perhaps reflecting the greater number of recurrent connections in CA3. To probe hippocampal spatial representations, we titrated input to the network by morphing VR environments during spatial navigation to assess the local CA3 as well as downstream CA1 responses. To this end, we found CA1 and CA3 neural population responses behave nonlinearly, consistent with attractor dynamics associated with the two stored representations. We interpret our findings as supporting classic theories of Hebbian learning and as the beginning of uncovering the relationship between hippocampal neural circuit activity and the computations implemented by their dynamics. Establishing this relationship is paramount to demystifying the neural underpinnings of cognition

    Oscillator-based neuronal modeling for seizure progression investigation and seizure control strategy

    Get PDF
    The coupled oscillator model has previously been used for the simulation of neuronal activities in in vitro rat hippocampal slice seizure data and the evaluation of seizure suppression algorithms. Each model unit can be described as either an oscillator which can generate action potential spike trains without inputs, or a threshold-based unit. With the change of only one parameter, each unit can either be an oscillator or a threshold-based spiking unit. This would eliminate the need for a new set of equations for each type of unit. Previous analysis has suggested that long kernel duration and imbalance of inhibitory feedback can cause the system to intermittently transition into and out of ictal activities. The state transitions of seizure-like events were investigated here; specifically, how the system excitability may change when the system undergoes transitions in the preictal and postictal processes. Analysis showed that the area of the excitation kernel is positively correlated with the mean firing rate of the ictal activity. The kernel duration is also correlated to the amount of ictal activity. The transition into ictal activity involved the escape from the saddle point foci in the state space trajectory identified by using Newton\u27s method. The ability to accurately anticipate and suppress seizures is an important endeavor that has tremendous impact on improving the quality of lives for epileptic patients. The stimulation studies have suggested that an electrical stimulation strategy that uses the intrinsic high complexity dynamics of the biological system may be more effective in reducing the duration of seizure-like activities in the computer model. In this research, we evaluate this strategy on an in vitro rat hippocampal slice magnesium-free model. Simulated postictal field potential data generated by an oscillator-based hippocampal network model was applied to the CA1 region of the rat hippocampal slices through a multi-electrode array (MEA) system. It was found to suppress and delay the onset of future seizures temporarily. The average inter-seizure time was found to be significantly prolonged after postictal stimulation when compared to the negative control trials and bipolar square wave signals. The result suggests that neural signal-based stimulation related to resetting may be suitable for seizure control in the clinical environment

    A General Hippocampal Computational Model Combining Episodic and Spatial Memory in a Spiking Model

    Get PDF
    Institute for Adaptive and Neural ComputationThe hippocampus, in humans and rats, plays crucial roles in spatial tasks and nonspatial tasks involving episodic-type memory. This thesis presents a novel computational model of the hippocampus (CA1, CA3 and dentate gyrus) which creates a framework where spatial memory and episodic memory are explained together. This general model follows the approach where the memory function of the rodent hippocampus is seen as a “memory space” instead of a “spatial memory”. The innovations of this novel model are centred around the fact that it follows detailed hippocampal architecture constraints and uses spiking networks to represent all hippocampal subfields. This hippocampal model does not require stable attractor states to produce a robust memory system capable of pattern separation and pattern completion. In this hippocampal theory, information is represented and processed in the form of activity patterns. That is, instead of assuming firing-rate coding, this model assumes that information is coded in the activation of specific constellations of neurons. This coding mechanism, associated with the use of spiking neurons, raises many problems on how information is transferred, processed and stored in the different hippocampal subfields. This thesis explores which mechanisms are available in the hippocampus to achieve such control, and produces a detailed model which is biologically realistic and capable of explaining how several computational components can work together to produce the emergent functional properties of the hippocampus. In this hippocampal theory, precise explanations are given to why mossy fibres are important for storage but not recall, what is the functional role of the mossy cells (excitatory interneurons) in the dentate gyrus, why firing fields can be asymmetric with the firing peak closer to the end of the field, which features are used to produce “place fields”, among others. An important property of this hippocampal model is that the memory system provided by the CA3 is a palimpsest memory: after saturation, the number of patterns that can be recalled is independent of the number of patterns engraved in the recurrent network. In parallel with the development of the hippocampal computational model, a simulation environment was created. This simulation environment was tailored for the needs and assumptions of the hippocampal model and represents an important component of this thesis
    • 

    corecore