1,659 research outputs found

    Optimal Lower Bounds for Anonymous Scheduling Mechanisms

    Get PDF
    We consider the problem of designing truthful mechanisms on m unrelated machines, to minimize some optimization goal. Nisan and Ronen [Nisan, N., A. Ronen. 2001. Algorithmic mechanism design. Games Econom. Behav. 35 166–196] consider the specific goal of makespan minimization, and show a lower bound of 2, and an upper bound of m. This large gap inspired many attempts that yielded positive results for several special cases, but very partial success for the general case: the lower bound was slightly increased to 2.61 by Christodoulou et al. [Christodoulou, G., E. Koutsoupias, A. Kovács. 2010. Mechanism design for fractional scheduling on unrelated machines. ACM Trans. Algorithms (TALG) 6(2) 1–18] and Koutsoupias and Vidali [Koutsoupias, E., A. Vidali. 2007. A lower bound of 1+phi for truthful scheduling mechanisms. Proc. 32nd Internat. Sympos. Math. Foundations Comput. Sci. (MFCS)], while the best upper bound remains unchanged. In this paper we show the optimal lower bound on truthful anonymous mechanisms: no such mechanism can guarantee an approximation ratio better than m. Moreover, our proof yields similar optimal bounds for two other optimization goals: the sum of completion times and the lp norm of the schedule.United States-Israel Binational Science FoundationIsrael. Ministry of ScienceGoogle Inter-University Center for Electronic Markets and Auction

    A deterministic truthful PTAS for scheduling related machines

    Full text link
    Scheduling on related machines (QCmaxQ||C_{\max}) is one of the most important problems in the field of Algorithmic Mechanism Design. Each machine is controlled by a selfish agent and her valuation can be expressed via a single parameter, her {\em speed}. In contrast to other similar problems, Archer and Tardos \cite{AT01} showed that an algorithm that minimizes the makespan can be truthfully implemented, although in exponential time. On the other hand, if we leave out the game-theoretic issues, the complexity of the problem has been completely settled -- the problem is strongly NP-hard, while there exists a PTAS \cite{HS88,ES04}. This problem is the most well studied in single-parameter algorithmic mechanism design. It gives an excellent ground to explore the boundary between truthfulness and efficient computation. Since the work of Archer and Tardos, quite a lot of deterministic and randomized mechanisms have been suggested. Recently, a breakthrough result \cite{DDDR08} showed that a randomized truthful PTAS exists. On the other hand, for the deterministic case, the best known approximation factor is 2.8 \cite{Kov05,Kov07}. It has been a major open question whether there exists a deterministic truthful PTAS, or whether truthfulness has an essential, negative impact on the computational complexity of the problem. In this paper we give a definitive answer to this important question by providing a truthful {\em deterministic} PTAS

    Welfare Maximization and Truthfulness in Mechanism Design with Ordinal Preferences

    Full text link
    We study mechanism design problems in the {\em ordinal setting} wherein the preferences of agents are described by orderings over outcomes, as opposed to specific numerical values associated with them. This setting is relevant when agents can compare outcomes, but aren't able to evaluate precise utilities for them. Such a situation arises in diverse contexts including voting and matching markets. Our paper addresses two issues that arise in ordinal mechanism design. To design social welfare maximizing mechanisms, one needs to be able to quantitatively measure the welfare of an outcome which is not clear in the ordinal setting. Second, since the impossibility results of Gibbard and Satterthwaite~\cite{Gibbard73,Satterthwaite75} force one to move to randomized mechanisms, one needs a more nuanced notion of truthfulness. We propose {\em rank approximation} as a metric for measuring the quality of an outcome, which allows us to evaluate mechanisms based on worst-case performance, and {\em lex-truthfulness} as a notion of truthfulness for randomized ordinal mechanisms. Lex-truthfulness is stronger than notions studied in the literature, and yet flexible enough to admit a rich class of mechanisms {\em circumventing classical impossibility results}. We demonstrate the usefulness of the above notions by devising lex-truthful mechanisms achieving good rank-approximation factors, both in the general ordinal setting, as well as structured settings such as {\em (one-sided) matching markets}, and its generalizations, {\em matroid} and {\em scheduling} markets.Comment: Some typos correcte

    Approximating Generalized Network Design under (Dis)economies of Scale with Applications to Energy Efficiency

    Full text link
    In a generalized network design (GND) problem, a set of resources are assigned to multiple communication requests. Each request contributes its weight to the resources it uses and the total load on a resource is then translated to the cost it incurs via a resource specific cost function. For example, a request may be to establish a virtual circuit, thus contributing to the load on each edge in the circuit. Motivated by energy efficiency applications, recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS), namely, cost functions that appear subadditive for small loads and superadditive for larger loads. The current paper advances the existing literature on approximation algorithms for GND problems with (D)oS cost functions in various aspects: (1) we present a generic approximation framework that yields approximation results for a much wider family of requests in both directed and undirected graphs; (2) our framework allows for unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated parallel machines with (D)oS cost functions; (3) our framework is fully combinatorial and runs in strongly polynomial time; (4) the family of (D)oS cost functions considered in the current paper is more general than the one considered in the existing literature, providing a more accurate abstraction for practical energy conservation scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only on the parameters of the resources' technology and does not grow with the number of resources, the number of requests, or their weights. The design of our framework relies heavily on Roughgarden's smoothness toolbox (JACM 2015), thus demonstrating the possible usefulness of this toolbox in the area of approximation algorithms.Comment: 39 pages, 1 figure. An extended abstract of this paper is to appear in the 50th Annual ACM Symposium on the Theory of Computing (STOC 2018
    corecore