32,561 research outputs found

    MVG Mechanism: Differential Privacy under Matrix-Valued Query

    Full text link
    Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. To address this challenge, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution, and we rigorously prove that the MVG mechanism preserves (ϵ,δ)(\epsilon,\delta)-differential privacy. Furthermore, we introduce the concept of directional noise made possible by the design of the MVG mechanism. Directional noise allows the impact of the noise on the utility of the matrix-valued query function to be moderated. Finally, we experimentally demonstrate the performance of our mechanism using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline.Comment: Appeared in CCS'1

    Selling Privacy at Auction

    Get PDF
    We initiate the study of markets for private data, though the lens of differential privacy. Although the purchase and sale of private data has already begun on a large scale, a theory of privacy as a commodity is missing. In this paper, we propose to build such a theory. Specifically, we consider a setting in which a data analyst wishes to buy information from a population from which he can estimate some statistic. The analyst wishes to obtain an accurate estimate cheaply. On the other hand, the owners of the private data experience some cost for their loss of privacy, and must be compensated for this loss. Agents are selfish, and wish to maximize their profit, so our goal is to design truthful mechanisms. Our main result is that such auctions can naturally be viewed and optimally solved as variants of multi-unit procurement auctions. Based on this result, we derive auctions for two natural settings which are optimal up to small constant factors: 1. In the setting in which the data analyst has a fixed accuracy goal, we show that an application of the classic Vickrey auction achieves the analyst's accuracy goal while minimizing his total payment. 2. In the setting in which the data analyst has a fixed budget, we give a mechanism which maximizes the accuracy of the resulting estimate while guaranteeing that the resulting sum payments do not exceed the analysts budget. In both cases, our comparison class is the set of envy-free mechanisms, which correspond to the natural class of fixed-price mechanisms in our setting. In both of these results, we ignore the privacy cost due to possible correlations between an individuals private data and his valuation for privacy itself. We then show that generically, no individually rational mechanism can compensate individuals for the privacy loss incurred due to their reported valuations for privacy.Comment: Extended Abstract appeared in the proceedings of EC 201

    Buying Private Data without Verification

    Get PDF
    We consider the problem of designing a survey to aggregate non-verifiable information from a privacy-sensitive population: an analyst wants to compute some aggregate statistic from the private bits held by each member of a population, but cannot verify the correctness of the bits reported by participants in his survey. Individuals in the population are strategic agents with a cost for privacy, \ie, they not only account for the payments they expect to receive from the mechanism, but also their privacy costs from any information revealed about them by the mechanism's outcome---the computed statistic as well as the payments---to determine their utilities. How can the analyst design payments to obtain an accurate estimate of the population statistic when individuals strategically decide both whether to participate and whether to truthfully report their sensitive information? We design a differentially private peer-prediction mechanism that supports accurate estimation of the population statistic as a Bayes-Nash equilibrium in settings where agents have explicit preferences for privacy. The mechanism requires knowledge of the marginal prior distribution on bits bib_i, but does not need full knowledge of the marginal distribution on the costs cic_i, instead requiring only an approximate upper bound. Our mechanism guarantees ϵ\epsilon-differential privacy to each agent ii against any adversary who can observe the statistical estimate output by the mechanism, as well as the payments made to the n−1n-1 other agents j≠ij\neq i. Finally, we show that with slightly more structured assumptions on the privacy cost functions of each agent, the cost of running the survey goes to 00 as the number of agents diverges.Comment: Appears in EC 201

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games
    • …
    corecore