436 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Design and Development of a Surgical Robot for Needle-Based Medical Interventions

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. If diagnosed in a timely manner, the treatment of choice is surgical resection of the cancerous lesions followed by radiotherapy. However, surgical resection may be too invasive for some patients due to old age or weakness. An alternative is minimally invasive needle-based interventions for cancer diagnosis and treatment. This project describes the design, analysis, development and experimental evaluation of a modular, compact, patient-mounted robotic manipulator for lung cancer diagnosis and treatment. In this regard, a novel parallel Remote Centre of Motion (RCM) mechanism is proposed for minimally invasive delivery of needle-based interventions. The proposed robot provides four degrees of freedom (DOFs) to orient and move a surgical needle within a spherical coordinate system. There is an analytical solution for the kinematics of the proposed parallel mechanism and the end-effectors motion is well-conditioned within the required workspace. The RCM is located beneath the skin surface to minimize the invasiveness of the surgical procedure while providing the required workspace to target the cancerous lesions. In addition, the proposed robot benefits from a design capable of measuring the interaction forces between the needle and the tissue. The experimental evaluation of the robot has proved its capability to accurately orient and move a surgical needle within the required workspace. Although this robotic system has been designed for the treatment of lung cancer, it is capable of performing other procedures in the thoracic or abdominal cavity such as liver cancer diagnosis and treatment

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Mechanism Design of Haptic Devices

    Get PDF

    Compliance Analysis of an Under-Actuated Robotic Finger

    Get PDF
    Under-actuated robotic hands have multiple applications fields, like prosthetics and service robots. They are interesting for their versatility, simple control and minimal component usage. However, when external forces are applied on the finger-tip, the mechanical structure of the finger might not be able to resist them. In particular, only a subset of disturbance forces will meet finite compliance, while forces in other directions impose null-space motions (infinite compliance). Motivated by the observation that infinite compliance (i.e. zero stiffness) can occur due to under-actuation, this paper presents a geometric analysis of the finger-tip compliance of an under-actuated robotic finger. The analysis also provides an evaluation of the finger design, which determines the set of disturbances that is resisted by finite compliance. The analysis relies on the definition of proper metrics for the joint-configuration space. Trivially, without damping, the mass matrix is used as a metric. However, in the case of damping (power losses), the physical meaningful metric to be used is found to be the damping matrix. Simulation experiments confirm the theoretical results
    corecore