1,253 research outputs found

    Experiments with Automated Reasoning in the Class

    Get PDF
    International audienceThe European Erasmus+ project ARC-Automated Reasoning in the Class aims at improving the academic education in disciplines related to Computational Logic by using Automated Reasoning tools. We present the technical aspects of the tools as well as our education experiments, which took place mostly in virtual lectures due to the COVID pandemics. Our education goals are: to support the virtual interaction between teacher and students in the absence of the blackboard, to explain the basic Computational Logic algorithms, to study their implementation in certain programming environments, to reveal the main relationships between logic and programming, and to develop the proof skills of the students. For the introductory lectures we use some programs in C and in Mathematica in order to illustrate normal forms, resolution, and DPLL (Davis-Putnam-Logemann-Loveland) with its Chaff version, as well as an implementation of sequent calculus in the Theorema system. Furthermore we developed special tools for SAT (propositional satisfiability), some based on the original methods from the partners, including complex tools for SMT (Satisfiability Modulo Theories) that allow the illustration of various solving approaches. An SMT related approach is natural-style proving in Elementary Analysis, for which we developed and interesting set of practical heuristics. For more advanced lectures on rewrite systems we use the Coq programming and proving environment, in order on one hand to demonstrate programming in functional style and on the other hand to prove properties of programs. Other advanced approaches used in some lectures are the deduction based synthesis of algorithms and the techniques for program transformation

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics

    Get PDF
    Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.Comment: 111 pages, 11 figures uses elsarticle latex clas
    corecore