2,240 research outputs found

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    A Continuum Robot and Control Interface for Surgical Assist in Fetoscopic Interventions

    Get PDF
    Twin-twin transfusion syndrome requires interventional treatment using a fetoscopically introduced laser to sever the shared blood supply between the fetuses. This is a delicate procedure relying on small instrumentation with limited articulation to guide the laser tip and a narrow field of view to visualize all relevant vascular connections. In this letter, we report on a mechatronic design for a comanipulated instrument that combines concentric tube actuation to a larger manipulator constrained by a remote centre of motion. A stereoscopic camera is mounted at the distal tip and used for imaging. Our mechanism provides enhanced dexterity and stability of the imaging device. We demonstrate that the imaging system can be used for computing geometry and enhancing the view at the operating site. Results using electromagnetic sensors for verification and comparison to visual odometry from the distal sensor show that our system is promising and can be developed further for multiple clinical needs in fetoscopic procedures

    Transducer applications, a compilation

    Get PDF
    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods

    Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    Get PDF
    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system (prism, gradient index lens, and optical fiber) that was used to deliver and collect light during imaging and 2) a small-scale silicon electromechanical scanner that could raster scan the focal point of the optics through a specimen. The scanner can be housed within a 7 mm Ø endoscope port and can scan at the speed of 3 kHz x 100 Hz × 30 Hz along three axes throughout a 125 × 125 × 100 μm[superscript 3] volume. The high-speed thermomechanical actuation was achieved through the use of geometric contouring, pulsing technique, and mechanical frequency multiplication (MFM), where MFM is a new method for increasing the device cycling speed by pairing actuators of unequal forward and returning stroke speeds. Sample cross-sectional images of 15-μm fluorescent beads are presented to demonstrate the resolution and optical cross-sectioning capability of the two-photon imaging system.National Institutes of Health (U.S.) (Grant 1-R21-CA118400-01)Chinese University of Hong Kong (Direct Grant 2050495)National Institutes of Health (U.S.) (Grant 9P41EB015871-26A1)National Institutes of Health (U.S.) (Grant 5R01EY017656-02)National Institutes of Health (U.S.) (Grant 5R01 NS051320)National Institutes of Health (U.S.) (Grant 4R44EB012415-02)National Science Foundation (U.S.) (Grant CBET-0939511)Singapore-MIT Alliance for Research and TechnologyMIT Skoltech InitiativeHamamatsu CorporationDavid H. Koch Institute for Integrative Cancer Research at MIT (Bridge Project Initiative

    Large displacement vertical translational actuator based on piezoelectric thin films

    Full text link
    A novel vertical translational microactuator based on thin-film piezoelectric actuation is presented, using a set of four compound bend-up/bend-down unimorphs to produce translational motion of a moving platform or stage. The actuation material is a chemical-solution deposited lead–zirconate–titanate (PZT) thin film. Prototype designs have shown as much as 120 µm of static displacement, with 80–90 µm displacements being typical, using four 920 µm long by 70 µm legs. Analytical models are presented that accurately describe nonlinear behavior in both static and dynamic operation of prototype stages when the dependence of piezoelectric coefficients on voltage is known. Resonance of the system is observed at a frequency of 200 Hz. The large displacement and high bandwidth of the actuators at low-voltage and low-power levels should make them useful to a variety of optical applications, including endoscopic microscopy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85407/1/jmm10_7_075016.pd

    Scalability study for robotic hand platform

    Get PDF
    The goal of this thesis project was to determine the lower limit of scale for the RIT robotic grasping hand. This was accomplished using a combination of computer simulation and experimental studies. A force analysis was conducted to determine the size of air muscles required to achieve appropriate contact forces at a smaller scale. Input variables, such as the actuation force and tendon return force, were determined experimentally. A dynamic computer model of the hand system was then created using Recurdyn. This was used to predict the contact (grasping) force of the fingers at full-scale, half-scale, and quarter-scale. Correlation between the computer model and physical testing was achieved for both a life-size and half-scale finger assembly. To further demonstrate the scalability of the hand design, both half and quarter-scale robotic hand rapid prototype assemblies were built using 3D printing techniques. This thesis work identified the point where further miniaturization would require a change in the manufacturing process to micro-fabrication. Several techniques were compared as potential methods for making a production intent quarter-scale robotic hand. Investment casting, Swiss machining, and Selective Laser Sintering were the manufacturing techniques considered. A quarter-scale robotic hand tested the limits of each technology. Below this scale, micro-machining would be required. The break point for the current actuation method, air muscles, was also explored. Below the quarter-scale, an alternative actuation method would also be required. Electroactive Polymers were discussed as an option for the micro-scale. In summary, a dynamic model of the RIT robotic grasping hand was created and validated as scalable at full and half-scales. The model was then used to predict finger contact forces at the quarter-scale. The quarter-scale was identified as the break point in terms of the current RIT robotic grasping hand based on both manufacturing and actuation. A novel, prototype quarter-scale robotic hand assembly was successfully built by an additive manufacturing process, a high resolution 3D printer. However, further miniaturization would require alternate manufacturing techniques and actuation mechanisms

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Multi-spectral Dual Axes Confocal Endomicroscope with Vertical Cross-sectional Scanning for In-vivo Targeted Imaging of Colorectal Cancer

    Full text link
    Pathologists review histology cut perpendicular to the tissue surface or in the vertical cross-section (XZ-plane) in order to visualize the normal or abnormal differentiation patterns. The epithelium of hollow organs, such as the colon, is the origin of many important forms of cancer. The vertical cross-section provides a comprehensive view of the epithelium which normally differentiates in the basilar to luminal direction. Real-time imaging in this orientation has not been fully explored in endomicroscopy because most instruments collect images in the horizontal cross-section (XY-plane). Imaging microstructures from the tissue surface to about half a millimeter deep can reveal early signs of disease. Furthermore, the use of molecular probes is an important, emerging direction in diagnostic imaging that improves specificity for disease detection and reveals biological function. Dysplasia is a pre-malignant condition in the colon that can progress into colorectal cancer. Peptides have demonstrated tremendous potential for in-vivo use to detect colonic dysplasia. Moreover, peptides can be labeled with NIR dyes for visualizing the full depth of the epithelium in small animals. This study aims to demonstrate large FOV multi-spectral targeted in-vivo vertical optical section with a dual axes confocal endomicroscope enabled by MEMS technology. The NIR multi-spectral fluorescence images demonstrate both histology-like morphology imaging and molecular imaging of specific peptide binding to dysplasia in the mouse colon. The specific aims of this study are: (1) to develop miniature vertical cross-sectional scan engine based on MEMS technology for imaging on XZ-plane; (2) to integrate micro-optics and develop multi-spectral dual axes confocal endomicroscope imaging system; (3) to perform in-vivo targeted vertical cross-sectional imaging with large FOV on colorectal cancer mouse model.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107154/1/zqiu_1.pd
    corecore