186,339 research outputs found

    Microglia mechanics : immune activation alters traction forces and durotaxis

    Get PDF
    This work was supported by the Austrian Agency for International Cooperation in Education and Research (Scholarship to LB), Faculty of Computer Science and Biomedical Engineering at Graz University of Technology (Scholarship to LB), German National Academic Foundation (Scholarship to DK), Wellcome Trust/University of Cambridge Institutional Strategic Support Fund (Research Grant to KF), Isaac Newton Trust (Research Grant 14.07 (m) to KF), Leverhulme Trust (Research Project Grant RPG-2014-217 to KF), UK Medical Research Council (Career Development Award to KF), and the Human Frontier Science Program (Young Investigator Grant RGY0074/2013 to GS, MG, and KF). Date of Acceptance: 31/08/2015Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.Publisher PDFPeer reviewe

    Studying the Robustness of the Triadic Trust Design with Mechanical Turk Subjects

    Get PDF
    This paper uses subjects recruited from an online employment exchange to study the robustness of the triadic trust design with a different subject pool. In running our experiments we tried to take advantage of the cost reducing features of the micro-employment culture found on Amazon’s Mechanical Turk. We find that first mover trust is robust to the change in subject pool, but second mover reciprocity was not

    The Effect of Trust and its Antecedents on Robot Acceptance

    Full text link
    As social and socially assistive robots are becoming more prevalent in our society, it is beneficial to understand how people form first impressions of them and eventually come to trust and accept them. This paper describes an Amazon Mechanical Turk study (n = 239) that investigated trust and its antecedents trustworthiness and first impressions. Participants evaluated the social robot Pepper's warmth and competence as well as trustworthiness characteristics ability, benevolence and integrity followed by their trust in and intention to use the robot. Mediation analyses assessed to what degree participants' first impressions affected their willingness to trust and use it. Known constructs from user acceptance and trust research were introduced to explain the pathways in which one perception predicted the next. Results showed that trustworthiness and trust, in serial, mediated the relationship between first impressions and behavioral intention.Comment: In SCRITA 2023 Workshop Proceedings (arXiv:2311.05401) held in conjunction with 32nd IEEE International Conference on Robot & Human Interactive Communication, 28/08 - 31/08 2023, Busan (Korea

    Developing a Preservation Strategy for the Water Filtration System of the Antiguo Acueducto de San Juan

    Get PDF
    The Conservation Trust of Puerto Rico is an organization that focuses on the historical and ecological preservation of Puerto Rico. It owns the site of the Antiguo Acueducto de San Juan, which contains a mechanical water filtration system. This team of four WPI students created a design of a working physical model of the system, as well as exhibit displays that convey the history of the site, the function of the mechanical water filtration system, and the importance of water conservation
    • …
    corecore