415 research outputs found

    Rehabilitation Technologies: Biomechatronics Point of View

    Get PDF

    Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review

    Get PDF
    Exoesqueleto para incrementar la fuerza en las rodillasThere are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators

    Design and Motion Control of a Lower Limb Robotic Exoskeleton

    Get PDF
    This chapter presents the results of research work on design, actuator selection and motion control of a lower extremity exoskeleton developed to provide legged mobility to spinal cord injured (SCI) individuals. The exoskeleton has two degrees of freedom per leg. Hip and knee joints are actuated in the sagittal plane by using DC servomotors. Additional effort supplied by user’s arms through crutches is defined as user support rate (USR). Experimentally determined USR values are considered in actuator torque computations for achieving a realistic actuator selection. A custom-embedded system is used to control exoskeleton. Reference joint trajectories are determined by using clinical gait analysis (CGA). Three-loop cascade controllers with current, velocity and position feedback are designed for controlling the joint motions of the exoskeleton. A non-linear ARX model is used to determine controller parameters. Overall performance and an assistive effect of WSE-2 are experimentally investigated by conducting tests with a paraplegic patient with T10 complete injury

    A case study of technology transfer: Rehabilitative engineering at Rancho Los Amigos Hospital

    Get PDF
    The transfer of NASA technolgy to rehabilitative applications of artificial limbs is studied. Human factors engineering activities range from orthotic manipulators to tiny dc motors and transducers to detect and transmit voluntary control signals. It is found that bicarbon implant devices are suitable for medical equipment and artificial limbs because of their biological compatibility with human body fluids and tissues

    Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot

    Get PDF
    Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient\u27s torso and the force is transmitted through a Bowden cable mechanism. Since the actuators\u27 mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented

    Development of a functional hand orthosis for boys with Duchenne muscular dystrophy

    Get PDF

    Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy

    Get PDF
    This paper describes the development of a novel control system for a robotic arm orthosis for assisting patients in motor training following stroke. The robot allows naturalistic motion of the arm and is as mechanically compliant as a human therapist's arms. This compliance preserves the connection between effort and error that appears essential for motor learning, but presents a challenge: accurately creating desired movements requires that the robot form a model of the patient's weakness, since the robot cannot simply stiffly drive the arm along the desired path. We show here that a standard model-based adaptive controller allows the robot to form such a model of the patient and complete movements accurately. However, we found that the human motor system, when coupled to such an adaptive controller, reduces its own participation, allowing the adaptive controller to take over the performance of the task. This presents a problem for motor training, since active engagement by the patient is important for stimulating neuroplasticity. We show that this problem can be solved by making the controller continuously attempt to reduce its assistance when errors are small. The resulting robot successfully assists stroke patients in moving in desired patterns with very small errors, but also encourages intense participation by the patient. Such robot assistance may optimally provoke neural plasticity, since it intensely engages both descending and ascending motor pathways. © 2007 IEEE

    Technologies and combination therapies for enhancing movement training for people with a disability

    Get PDF
    There has been a dramatic increase over the last decade in research on technologies for enhancing movement training and exercise for people with a disability. This paper reviews some of the recent developments in this area, using examples from a National Science Foundation initiated study of mobility research projects in Europe to illustrate important themes and key directions for future research. This paper also reviews several recent studies aimed at combining movement training with plasticity or regeneration therapies, again drawing in part from European research examples. Such combination therapies will likely involve complex interactions with motor training that must be understood in order to achieve the goal of eliminating severe motor impairment
    • 

    corecore