78 research outputs found

    Principal components analysis based control of a multi-dof underactuated prosthetic hand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG signals in order to make each joint move independently, and this could require significant cognitive effort to the user.</p> <p>Methods</p> <p>A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and subsequently used for control.</p> <p>Results</p> <p>Trials have shown that two independent input signals can be successfully used to control the posture of a real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved.</p> <p>Conclusions</p> <p>This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up promising possibilities for the development of an intuitively controllable hand prosthesis.</p

    Replicating human hand synergies onto robotic hands: a review on software and hardware strategies

    Get PDF
    This review reports the principal solutions proposed in the literature to reduce the complexity of the control and of the design of robotic hands taking inspiration from the organization of the human brain. Several studies in neuroscience concerning the sensorimotor organization of the human hand proved that, despite the complexity of the hand, a few parameters can describe most of the variance in the patterns of configurations and movements. In other words, humans exploit a reduced set of parameters, known in the literature as synergies, to control their hands. In robotics, this dimensionality reduction can be achieved by coupling some of the degrees of freedom (DoFs) of the robotic hand, that results in a reduction of the needed inputs. Such coupling can be obtained at the software level, exploiting mapping algorithm to reproduce human hand organization, and at the hardware level, through either rigid or compliant physical couplings between the joints of the robotic hand. This paper reviews the main solutions proposed for both the approaches

    Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand

    Get PDF
    The synergy-based motion generation of current anthropomorphic hands generally employ the static posture synergy, which is extracted from quantities of joint trajectory, to design the mechanism or control strategy. Under this framework, the temporal weight sequences of each synergy from pregrasp phase to grasp phase are required for reproducing any grasping task. Moreover, the zero-offset posture has to be preset before starting any grasp. Thus, the whole grasp phase appears to be unlike natural human grasp. Up until now, no work in the literature addresses these issues toward simplifying the continual grasp by only inputting the grasp pattern. In this paper, the kinematic synergies observed in angular velocity profile are employed to design the motion generation mechanism. The kinematic synergy extracted from quantities of grasp tasks is implemented by the proposed eigen cam group in tendon space. The completely continual grasp from the fully extending posture only require averagely rotating the two eigen cam groups one cycle. The change of grasp pattern only depends on respecifying transmission ratio pair for the two eigen cam groups. An illustrated hand prototype is developed based on the proposed design principle and the grasping experiments demonstrate the feasibility of the design method. The potential applications include the prosthetic hand that is controlled by the classified pattern from the bio-signal

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    AN UNDERACTUATED MECHANICAL HAND PROSTHESYS BY IFToMM ITALY

    Get PDF
    This paper describes a mechanical underactuated hand, whose design is under patenting. The proposed hand can be used as robot grasping end-effector and, mainly, as a human prosthesis. The proposed underactuated mechanism is based on an adaptive scheme, hence it permits to move five fingers with only one actuator. The actuator is connected to a set of pulleys that operate five tendons. Each tendon will move the phalanxes of a finger. The proposed mechanism permits each finger to adapt its configuration to almost any object shape so that each of the fingers will grasp the object independently on the configuration of the finger itself and independently on the configuration of the other fingers. The tendons are un-extendible so that each finger will grasp an object always with the same force, regardless of object shape. The overall grasping force will be controlled just by adjusting the input actuator torque. This paper also reports preliminary kinematic and dynamic studies aiming to a validation of the feasibility of the proposed design solution. Finally an early experimental prototype is shown

    A soft, synergy-based robotic glove for grasping assistance

    Get PDF
    This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test

    Synergy-Based Human Grasp Representations and Semi-Autonomous Control of Prosthetic Hands

    Get PDF
    Das sichere und stabile Greifen mit humanoiden RoboterhĂ€nden stellt eine große Herausforderung dar. Diese Dissertation befasst sich daher mit der Ableitung von Greifstrategien fĂŒr RoboterhĂ€nde aus der Beobachtung menschlichen Greifens. Dabei liegt der Fokus auf der Betrachtung des gesamten Greifvorgangs. Dieser umfasst zum einen die Hand- und Fingertrajektorien wĂ€hrend des Greifprozesses und zum anderen die Kontaktpunkte sowie den Kraftverlauf zwischen Hand und Objekt vom ersten Kontakt bis zum statisch stabilen Griff. Es werden nichtlineare posturale Synergien und Kraftsynergien menschlicher Griffe vorgestellt, die die Generierung menschenĂ€hnlicher Griffposen und GriffkrĂ€fte erlauben. Weiterhin werden Synergieprimitive als adaptierbare ReprĂ€sentation menschlicher Greifbewegungen entwickelt. Die beschriebenen, vom Menschen gelernten Greifstrategien werden fĂŒr die Steuerung robotischer ProthesenhĂ€nde angewendet. Im Rahmen einer semi-autonomen Steuerung werden menschenĂ€hnliche Greifbewegungen situationsgerecht vorgeschlagen und vom Nutzenden der Prothese ĂŒberwacht

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas
    • 

    corecore