1,483 research outputs found

    Exoskeleton master controller with force-reflecting telepresence

    Get PDF
    A thorough understanding of the requirements for successful master-slave robotic systems is becoming increasingly desirable. Such systems can aid in the accomplishment of tasks that are hazardous or inaccessible to humans. Although a history of use has proven master-slave systems to be viable, system requirements and the impact of specifications on the human factors side of system performance are not well known. In support of the next phase of teleoperation research being conducted at the Armstrong Research Laboratory, a force-reflecting, seven degree of freedom exoskeleton for master-slave teleoperation has been concepted, and is presently being developed. The exoskeleton has a unique kinematic structure that complements the structure of the human arm. It provides a natural means for teleoperating a dexterous, possibly redundant manipulator. It allows ease of use without operator fatigue and faithfully follows human arm and wrist motions. Reflected forces and moments are remotely transmitted to the operator hand grip using a cable transmission scheme. This paper presents the exoskeleton concept and development results to date. Conceptual design, hardware, algorithms, computer architecture, and software are covered

    A review on design of upper limb exoskeletons

    Get PDF

    Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton

    Full text link
    This paper presents design principles for comfort-centered wearable robots and their application in a lightweight and backdrivable knee exoskeleton. The mitigation of discomfort is treated as mechanical design and control issues and three solutions are proposed in this paper: 1) a new wearable structure optimizes the strap attachment configuration and suit layout to ameliorate excessive shear forces of conventional wearable structure design; 2) rolling knee joint and double-hinge mechanisms reduce the misalignment in the sagittal and frontal plane, without increasing the mechanical complexity and inertia, respectively; 3) a low impedance mechanical transmission reduces the reflected inertia and damping of the actuator to human, thus the exoskeleton is highly-backdrivable. Kinematic simulations demonstrate that misalignment between the robot joint and knee joint can be reduced by 74% at maximum knee flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm root mean square (RMS) low resistive torque. The torque control experiments demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa

    Haptic Hand Exoskeleton for Precision Grasp Simulation

    Get PDF
    This paper outlines the design and the development of a novel robotic hand exoskeleton (HE) conceived for haptic interaction in the context of virtual reality (VR) and teleoperation (TO) applications. The device allows exerting controlled forces on fingertips of the index and thumb of the operator. The new exoskeleton features several design solutions adopted with the aim of optimizing force accuracy and resolution. The use of remote centers of motion mechanisms allows achieving a compact and lightweight design. An improved stiffness of the transmission and reduced requirements for the electromechanical actuators are obtained thanks to a novel principle for integrating speed reduction into torque transmission systems. A custom designed force sensor and integrated electronics are employed to further improve performances. The electromechanical design of the device and the experimental characterization are presented

    State-of-the-Art of Hand Exoskeleton Systems

    Get PDF
    This paper deals with the analysis of the state-of-the-art of robotic hand exoskeletons (updated at May 2011), which is intended as the first step of a designing activity. A large number of hand exoskeletons (both products and prototypes) that feature some common characteristics and many special peculiarities are reported in the literature. Indeed, in spite of very similar functionalities, different hand exoskeletons can be extremely different for the characteristics of their mechanism architectures, control systems and working principles. The aim of this paper is to provide the reader with a complete and schematic picture of the state-of-the-art of hand exoskeletons. The focus is placed on the description of the main aspects that are involved in the exoskeleton design such as the system kinematics, the actuator systems, the transmission parts and the control schemes. Additionally, the critical issues provided by the literature analysis are discussed in order to enlighten the differences and the common features of different practical solutions. This paper may help to understand both the reasons why certain solutions are proposed for the different applications and the advantages and drawbacks of the different designs proposed in the literature. The motivation of this study is the need to design a new hand exoskeleton for rehabilitation purposes

    Compliant actuators that mimic biological muscle performance with applications in a highly biomimetic robotic arm

    Full text link
    This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots, thereby fostering the evolution of these robotic systems. We introduce two novel compliant actuators, namely the Internal Torsion Spring Compliant Actuator (ICA) and the External Spring Compliant Actuator (ECA), and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator (MISA) through computational and experimental results. These actuators, employing a motor-tendon system, emulate biological muscle-like forms, enhancing artificial muscle technology. A robotic arm application inspired by the skeletal ligament system is presented. Experiments demonstrate satisfactory power in tasks like lifting dumbbells (peak power: 36W), playing table tennis (end-effector speed: 3.2 m/s), and door opening, without compromising biomimetic aesthetics. Compared to other linear stiffness serial elastic actuators (SEAs), ECA and ICA exhibit high power-to-volume (361 x 10^3 W/m) and power-to-mass (111.6 W/kg) ratios respectively, endorsing the biomimetic design's promise in robotic development

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    Design, Computational Modelling and Experimental Characterization of Bistable Hybrid Soft Actuators for a Controllable-Compliance Joint of an Exoskeleton Rehabilitation Robot

    Get PDF
    This paper presents the mechatronic design of a biorobotic joint with controllable compliance, for innovative applications of “assist-as-needed” robotic rehabilitation mediated by a wearable and soft exoskeleton. The soft actuation of robotic exoskeletons can provide some relevant advantages in terms of controllable compliance, adaptivity and intrinsic safety of the control performance of the robot during the interaction with the patient. Pneumatic Artificial Muscles (PAMs), which belong to the class of soft actuators, can be arranged in antagonistic configuration in order to exploit the variability of their mechanical compliance for the optimal adaptation of the robot performance during therapy. The coupling of an antagonistic configuration of PAMs with a regulation mechanism can achieve, under a customized control strategy, the optimal tuning of the mechanical compliance of the exoskeleton joint over full ranges of actuation pressure and joint rotation. This work presents a novel mechanism, for the optimal regulation of the compliance of the biorobotic joint, which is characterized by a soft and hybrid actuation exploiting the storage/release of the elastic energy by bistable Von Mises elastic trusses. The contribution from elastic Von Mises structure can improve both the mechanical response of the soft pneumatic bellows actuating the regulation mechanism and the intrinsic safety of the whole mechanism. A comprehensive set of design steps is presented here, including the optimization of the geometry of the pneumatic bellows, the fabrication process through 3D printing of the mechanism and some experimental tests devoted to the characterization of the hybrid soft actuation. The experimental tests replicated the main operating conditions of the regulation mechanism; the advantages arising from the bistable hybrid soft actuation were evaluated in terms of static and dynamic performance, e.g., pressure and force transition thresholds of the bistable mechanism, linearity and hysteresis of the actuator response
    • …
    corecore