292 research outputs found

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    Wearable exoskeleton robot design

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2007Includes bibliographical references (leaves: 81-82)Text in English; Abstract: Turkish and Englishxi, 94 leavesIn this thesis study it is intended to design a wearable exoskeleton robot which will replace paralytic or disable people.s legs and provide to walk. The wearable exoskeleton robot will be an intelligent system that fulfill the gait necessities, climb the slopes up and down, and remove the disadvantages of the wheelchairs and mobility aid vehicles. Robot will be a wearable device like a trouser and it will work to carry out daily duties for users. Robot will increase user.s maneuver capabilities and support users. legs and aid walking action for users thanks to 3-one degree of freedom (DOF) joints which are designed for each leg and are powered by DC electric actuators. Design of the wearable exoskeleton robot includes, modeling and designing of the robot using a parametric solid modeling computer program (Solidworks), selection of the most suitable material for the design characters and robot manufacturing processes, strength analysis of the critical part of the robot, mathematical modeling of the system, design and manufacturing of the test machine and finding the most suitable walking combination by investigating degree of freedoms of each joints on the legs. In addition to mechanical design of the wearable exoskeleton robot, an electronic circuit is designed and manufactured in order to control each joint movement order and time in walking action. Moreover, in order to control the robot by the users, a keypad unit is manufactured on the robot and necessity functions are described in the program. As a result of this thesis; a wearable exoskeleton robot is manufactured to be used as a walking assistant

    State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance

    Get PDF
    https://ieeexplore.ieee.org/document/8759880/keywords#keywordsThe number of elderly populations is rapidly increasing. Majority of elderly people face difficulties while walking because the muscular activity or other gait-related parameters start to deteriorate with aging. Therefore, the quality of life among them can be suffered. To make their life more comfortable, service providing robotic solutions in terms of wearable powered exoskeletons should be realized. Assistive powered exoskeletons are capable of providing additional torque to support various activities, such as walking, sit to stand, and stand to sit motions to subjects with mobility impairments. Specifically, the powered exoskeletons try to maintain and keep subjects' limbs on the specified motion trajectory. The state of the art of currently available lower limb assistive exoskeletons for weak and elderly people is presented in this paper. The technology employed in the assistive devices, such as actuation and power supply types, control strategies, their functional abilities, and the mechanism design, is thoroughly described. The outcome of studied literature reveals that there is still much work to be done in the improvement of assistive exoskeletons in terms of their technological aspects, such as choosing proper and effective control methods, developing user friendly interfaces, and decreasing the costs of device to make it more affordable, meanwhile ensuring safe interaction for the end-users
    corecore