974 research outputs found

    Technologies that assess the location of physical activity and sedentary behavior: a systematic review

    Get PDF
    Background: The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. Objective: This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. Methods: To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results: A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. Conclusions: The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information

    Advancing the objective measurement of physical activity and sedentary behaviour context

    Get PDF
    Objective data from national surveillance programmes show that, on average, individuals accumulate high amounts of sedentary time per day and only a small minority of adults achieve physical activity guidelines. One potential explanation for the failure of interventions to increase population levels of physical activity or decrease sedentary time is that research to date has been unable to identify the specific behavioural levers in specific contexts needed to change behaviour. Novel technology is emerging with the potential to elucidate these specific behavioural contexts and thus identify these specific behavioural levers. Therefore the aims of this four study thesis were to identify novel technologies capable of measuring the behavioural context, to evaluate and validate the most promising technology and to then pilot this technology to assess the behavioural context of older adults, shown by surveillance programmes to be the least physically active and most sedentary age group. Study one Purpose: To identify, via a systematic review, technologies which have been used or could be used to measure the location of physical activity or sedentary behaviour. Methods: Four electronic databases were searched using key terms built around behaviour, technology and location. To be eligible for inclusion papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed from the inception of the database up to 04/02/2015. Searches were also performed using three internet search engines. Specialised software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results: 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras and Radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems and 21 wearable cameras. Conclusion: The addition of location information to existing measures of physical activity and sedentary behaviour will provide important behavioural information. Study Two Purpose: This study investigated the Actigraph proximity feature across three experiments. The aim of Experiment One was to assess the basic characteristics of the Actigraph RSSI signal across a range of straight line distances. Experiment Two aimed to assess the level of receiver device signal detection in a single room under unobstructed conditions, when various obstructions are introduced and the impacts these obstructions have on the intra and inter unit variability of the RSSI signal. Finally, Experiment Three aimed to assess signal contamination across multiple rooms (i.e. one beacon being detected in multiple rooms). Methods: Across all experiments, the receiver(s) collected data at 10 second epochs, the highest resolution possible. In Experiment One two devices, one receiver and one beacon, were placed opposite each other at 10cm increments for one minute at each distance. The RSSI-distance relationship was then visually assessed for linearity. In Experiment Two, a test room was demarcated into 0.5 x 0.5 m grids with receivers simultaneously placed in each demarcated grid. This process was then repeated under wood, metal and human obstruction conditions. Descriptive tallies were used to assess the signal detection achieved for each receiver from each beacon in each grid. Mean RSSI signal was calculated for each condition alongside intra and inter-unit standard deviation, coefficient of variation and standard error of the measurement. In Experiment Three, a test apartment was used with three beacons placed across two rooms. The researcher then completed simulated conditions for 10 minutes each across the two rooms. The percentage of epochs where a signal was detected from each of the three beacons across each test condition was then calculated. Results: In Experiment One, the relationship between RSSI and distance was found to be non-linear. In Experiment Two, high signal detection was achieved in all conditions; however, there was a large degree of intra and inter-unit variability in RSSI. In Experiment Three, there was a large degree of multi-room signal contamination. Conclusion: The Actigraph proximity feature can provide a binary indicator of room level location. Study Three Purpose: To use novel technology in three small feasibility trials to ascertain where the greatest utility can be demonstrated. Methods: Feasibility Trial One assessed the concurrent validity of electrical energy monitoring and wearable cameras as measures of television viewing. Feasibility Trial Two utilised indoor location monitoring to assess where older adult care home residents accumulate their sedentary time. Lastly, Feasibility Trial Three investigated the use of proximity sensors to quantify exposure to a height adjustable desk Results: Feasibility Trial One found that on average the television is switched on for 202 minutes per day but is visible in just 90 minutes of wearable camera images with a further 52 minutes where the participant is in their living room but the television is not visible in the image. Feasibility Trial Two found that residents were highly sedentary (sitting for an average of 720 minutes per day) and spent the majority of their time in their own rooms with more time spent in communal areas in the morning than in the afternoon. Feasibility Trial Three found a discrepancy between self-reported work hours and objectively measured office dwell time. Conclusion: The feasibility trials outlined in this study show the utility of objectively measuring context to provide more detailed and refined data. Study Four Purpose: To objectively measure the context of sedentary behaviour in the most sedentary age group, older adults. Methods: 26 residents and 13 staff were recruited from two care homes. Each participant wore an Actigraph GT9X on their non-dominant wrist and a LumoBack posture sensor on their lower back for one week. The Actigraph recorded proximity every 10 seconds and acceleration at 100 Hz. LumoBack data were provided as summaries per 5 minutes. Beacon Actigraphs were placed around each care home in the resident s rooms, communal areas and corridors. Proximity and posture data were combined in 5 minute epochs with descriptive analysis of average time spent sitting in each area produced. Acceleration data were summarised into 10 second epochs and combined with proximity data to show the average count per epoch in each area of the care home. Mann-Whitney tests were performed to test for differences between care homes. Results: No significant differences were found between Care Home One and Care Home Two in the amount of time spent sitting in communal areas of the care home (301 minutes per day and 39 minutes per day respectively, U=23, p=0.057) or in the amount of time residents spent sitting in their own room (215 minutes per day and 337 minutes per day in Care Home One and Two respectively, U=32, p=0.238). In both care homes, accelerometer measured average movement increases with the number of residents in the communal area. Conclusion: The Actigraph proximity system was able to quantify the context of sedentary behaviour in older adults. This enabled the identification of levers for behaviour change which can be used to reduce sedentary time in this group. Overall conclusion: There are a large number of technologies available with the potential to measure the context of physical activity or sedentary time. The Actigraph proximity feature is one such technology. This technology is able to provide a binary measure of proximity via the detection or non-detection of Bluetooth signal: however, the variability of the signal prohibits distance estimation. The Actigraph proximity feature, in combination with a posture sensor, is able to elucidate the context of physical activity and sedentary time

    Validity of a Global Positioning System-Based Algorithm and Consumer Wearables for Classifying Active Trips in Children and Adults

    Get PDF
    Accepted author manuscript version reprinted, by permission, from [Journal for the Measurement of Physical Behaviour, 2021, Volume 4: Issue 4: pp. 321ā€“332, https://doi.org/10.1123/jmpb.2021-0019. Ā© Human Kinetics, Inc.Objective: To investigate the convergent validity of a global positioning system (GPS)-based and two consumer-based measures with trip logs for classifying pedestrian, cycling, and vehicle trips in children and adults. Methods: Participants (Nā€‰=ā€‰34) wore a Qstarz GPS tracker, Fitbit Alta, and Garmin vivosmart 3 on multiple days and logged their outdoor pedestrian, cycling, and vehicle trips. Logged trips were compared with device-measured trips using the Personal Activity Location Measurement System (PALMS) GPS-based algorithms, Fitbitā€™s SmartTrack, and Garminā€™s Move IQ. Trip- and day-level agreement were tested. Results: The PALMS identified and correctly classified the mode of 75.6%, 94.5%, and 96.9% of pedestrian, cycling, and vehicle trips (84.5% of active trips, F1ā€‰=ā€‰0.84 and 0.87) as compared with the log. Fitbit and Garmin identified and correctly classified the mode of 26.8% and 17.8% (22.6% of active trips, F1ā€‰=ā€‰0.40 and 0.30) and 46.3% and 43.8% (45.2% of active trips, F1ā€‰=ā€‰0.58 and 0.59) of pedestrian and cycling trips. Garmin was more prone to false positives (false trips not logged). Day-level agreement for PALMS and Garmin versus logs was favorable across trip modes, though PALMS performed best. Fitbit significantly underestimated daily cycling. Results were similar but slightly less favorable for children than adults. Conclusions: The PALMS showed good convergent validity in children and adults and were about 50% and 27% more accurate than Fitbit and Garmin (based on F1). Empirically-based recommendations for improving PALMSā€™ pedestrian classification are provided. Since the consumer devices capture both indoor and outdoor walking/running and cycling, they are less appropriate for trip-based research

    Multi-sensor movement analysis for transport safety and health applications

    Get PDF
    Recent increases in the use of and applications for wearable technology has opened up many new avenues of research. In this paper, we consider the use of lifelogging and GPS data to extend fine-grained movement analysis for improving applications in health and safety. We first design a framework to solve the problem of indoor and outdoor movement detection from sensor readings associated with images captured by a lifelogging wearable device. Second we propose a set of measures related with hazard on the road network derived from the combination of GPS movement data, road network data and the sensor readings from a wearable device. Third, we identify the relationship between different socio-demographic groups and the patterns of indoor physical activity and sedentary behaviour routines as well as disturbance levels on different road settings

    From Accessibility and Exposure to Engagement: A Multi-scalar Approach to Measuring Environmental Determinants of Childrenā€™s Health Using Geographic Information Systems

    Get PDF
    A growing body of research suggests that increasing the accessibility to health-related environmental features and increasing exposure to and engagement in outdoor environments leads to positive benefits for the overall health and well-being of children. Additionally, research over the last twenty-five years has documented a decline in the time children spend outdoors. Outdoor activity in children is associated with increased levels of physical fitness, and cognitive well-being. Despite acknowledging this connection, problems occur for researchers when attempting to identify the childā€™s location and to measure whether a child has made use of an accessible health-related facility, or where, when and for how long a child spends time outdoors. The purpose of this thesis is to measure childrenā€™s accessibility to, exposure to, and engagement with health-promoting features of their environment. The research on the environment-health link aims to meet two objectives: 1) to quantify the magnitude of positional discrepancies and accessibility misclassiļ¬cation that result from using several commonly-used address proxies; and 2) to examine how individual-level, household-level, and neighbourhood-level factors are associated with the quantity of time children spend outdoors. This will be achieved by employing the use of GPS tracking to objectively quantify the time spent outdoors using a novel machine learning algorithm, and by applying a hexagonal grid to extract built environment measures. This study aims to identify the impact of positional discrepancies when measuring accessibility by examining misclassiļ¬cation of address proxies to several health-related facilities throughout the City of London and Middlesex County, Ontario, Canada. Positional errors are quantiļ¬ed by multiple neighbourhood types. Findings indicate that the shorter the threshold distance used to measure accessibility between subject population and health-related facility, the higher the proportion of misclassiļ¬ed addresses. Using address proxies based on large aggregated units, such as centroids of census tracts or dissemination areas, can result in vast positional discrepancies, and therefore should be avoided in spatial epidemiologic research. To reduce the misclassification, and positional errors, the use of individual portable passive GPS receivers were employed to objectively track the spatial patterns, and quantify the time spent outdoors of children (aged 7 to 13 years) in London, Ontario across multiple neighbourhood types. On the whole, children spent most of their outdoor time during school hours (recess time) and the non-school time outdoors in areas immediately surrounding their home. From these findings, policymakers, educators, and parents can support childrenā€™s health by making greater efforts to promote outdoor activities for improved health and quality of life in children. This thesis aims to advance our understanding of the environment and health-link and suggests practical steps for more well-informed decision making by combining novel classification and mapping techniques

    AEVUM: Personalized Health Monitoring System

    Get PDF
    Advancement in the field of sensors and other portable technologies have resulted in a bevy of health monitoring devices such as blue-tooth and Wi-Fi enabled weighing scales and wearables which help individuals monitor their personal health. This collected information provides a plethora of data points over intervals of time that a primary care physician can utilize to gain a holistic understanding of an individualā€™s health and provide a more effective and personalized treatment. A drawback of the existing health monitoring devices is that they are not integrated with the professional medical infrastructure. With the wealth of information collected, it is also not feasible for a physician to look through all the data to obtain relevant information or patterns from multiple health monitoring systems. Therefore, it would be beneficial to have a single platform of hardware devices to monitor and collect data and a software application to securely store the collected information, identify patterns for analysis, and summarize the data for the physician and the patient. The aim of this study was to design and develop an unobtrusive, user friendly system, Aevum, which would integrate technology, adapt itself to changes in consumer behavior and integrate with the existing healthcare infrastructure to help an individual monitor their health in a customized manner. Aevum is a multi-device system consisting of a smart, puck-shaped hardware product, a wristband and a software application available to the patient as well as the physician. In addition to monitoring vitals such as heart rate, blood pressure, body temperature and weight, Aevum can monitor environmental factors that affect an individualā€™s health and uses personalized metrics such as precise calorie intake and medication management to monitor health. This allows the user to personalize Aevum based on their health condition. Finally, Aevum identifies patterns of anomalies in the collected data and compiles the information which can be accessed by the physician to assist in their treatment

    Wireless sensor systems in indoor situation modeling II (WISM II)

    Get PDF
    fi=vertaisarvioimaton|en=nonPeerReviewed

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint
    • ā€¦
    corecore