277 research outputs found

    Real-time Alpine Measurement System Using Wireless Sensor Networks

    Get PDF
    International audienceMonitoring the snow pack is crucial for many stakeholders, whether for hydro-poweroptimization, water management or flood control. Traditional forecasting relies on regressionmethods, which often results in snow melt runoff predictions of low accuracy in non-averageyears. Existing ground-based real-time measurement systems do not cover enough physiographicvariability and are mostly installed at low elevations. We present the hardware and software designof a state-of-the-art distributedWireless Sensor Network (WSN)-based autonomous measurementsystem with real-time remote data transmission that gathers data of snow depth, air temperature,air relative humidity, soil moisture, soil temperature, and solar radiation in physiographicallyrepresentative locations. Elevation, aspect, slope and vegetation are used to select networklocations, and distribute sensors throughout a given network location, since they govern snowpack variability at various scales. Three WSNs were installed in the Sierra Nevada of NorthernCalifornia throughout the North Fork of the Feather River, upstream of the Oroville dam and multiplepowerhouses along the river. The WSNs gathered hydrologic variables and network health statisticsthroughout the 2017 water year, one of northern Sierra’s wettest years on record. These networksleverage an ultra-low-power wireless technology to interconnect their components and offer recoveryfeatures, resilience to data loss due to weather and wildlife disturbances and real-time topologicalvisualizations of the network health. Data show considerable spatial variability of snow depth, evenwithin a 1 km2 network location. Combined with existing systems, these WSNs can better detectprecipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoffduring precipitation or snow melt, and inform hydro power managers about actual ablation andend-of-season date across the landscape

    Feasibility of wireless mesh for LTE-Advanced small cell access backhaul

    Get PDF
    Mobiilidatan määrä on muutaman viime vuoden aikana kasvanut voimakkaasti ja nykyiset ennustukset arvioivat eksponentiaalista kasvukäyrää tulevien vuosien aikana. Matkapuhelinjärjestelmät ovat kehittyneet nopeasti tämän trendin ohjaamana. Neljännen sukupolven matkapuhelinverkkostandardien myötä, uudet innovaatiot kuten heterogeeniset verkkoratkaisut tarjoavat ratkaisun nykyisiin skaalautuvuus- ja kapasiteettiongelmiin. Joitain ilmeisiä ongelmakohtiakin kuitenkin esiintyy kuten heterogeenisten verkkojen runkokytkennän toteuttaminen. Yksi lupaavimmista tavoista toteuttaa heterogeenisten verkkojen runkokytkentä on langaton ja itseorganisoituva mesh-verkko. Tämän opinnäytetyön tavoitteena on varmistaa ja testata Nokia Siemens Networksin kehittämän mesh-runkokytkentäverkkokonseptin toteutettavuutta ja toiminnallisuutta soveltuvan validointijärjestelmän avulla. Kaiken kaikkiaan validointijärjestelmä ja sen päälle toteutettu mesh-protokolla toimivat moitteettomasti koko kehitys- ja testausprosessin ajan. Konseptin eri ominaisuudet ja mekanismit todistettiin täysin toteutettaviksi ja toimiviksi. Muutamalla lisäominaisuudella ja konseptiparannuksella mesh-konsepti tarjoaa houkuttelevan ja innovatiivisen ratkaisun heterogeenisten verkkojen runkokytkentään tulevaisuudessa.Mobile traffic demands and volumes are increasing and will dramatically keep increasing in the future. Along with this, mobile networks have evolved to better match this growth. Fourth generation cellular network standard introduced a set of new innovations for mobile communications, including support for heterogeneous network deployments. Heterogeneous networking is the likely answer for future mobile data capacity shortage but also poses some challenges, the most evident being how to implement the backhauling. One of the most promising heterogeneous network backhaul solutions is a meshed radio system with self-organizing features. The main scope of this master's thesis is the verification of functionality and feasibility of a wireless mesh backhaul concept developed by Nokia Siemens Networks through a proof-of-concept system. All in all, the wireless mesh proof-of-concept system performed strongly throughout the development and testing process. The different functionalities were proven to work successfully together. With further development and enhancement, the system concept displays extreme potential for a state-of-the-art heterogeneous network backhaul technology

    Rapidly IPv6 multimedia management schemes based LTE-A wireless networks

    Get PDF
    Ensuring the best quality of smart multimedia services becomes an essential goal for modern enterprises so there is always a need for effective IP mobility smart management schemes in order to fulfill the following two main functions: (I) interconnecting the moving terminals around the extended indoor smart services. In addition, (II) providing session continuity for instant data transfer in real-time and multimedia applications with negligible latency, efficient bandwidth utilization, and improved reliability. In this context, it found out that the Generalized Multi-Protocol Label Switching (GMPLS) over LTE-A network that offers many advanced services for large numbers of users with higher bandwidths, better spectrum efficiency, and lower latency. In GMPLS, there is an elimination of the routing searches and choice of routing protocols on every core LTE-A router also it provides the architecture simplicity and increases the scalability. A comparative assessment of three types of IPv6 mobility management schemes over the LTE-A provided by using various types of multimedia. By using OPNET Simulator 17.5, In accordance with these schemes, it was proven that the IPv6-GMPLS scheme is the best choice for the system's operation, in comparison to the IPv6-MPLS and Mobile IPv6 for all multimedia offerings and on the overall network performance

    Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating System

    Get PDF
    The problem which I address in this thesis is to find a way to organise and manage a network of wireless sensor nodes using a minimal amount of communication. To find a solution I explore the use of Bio-inspired protocols to enable WSN management while maintaining a low communication overhead. Wireless Sensor Networks (WSNs) are loosely coupled distributed systems comprised of low-resource, battery powered sensor nodes. The largest problem with WSN management is that communication is the largest consumer of a sensor node’s energy. WSN management systems need to use as little communication as possible to prolong their operational lifetimes. This is the Wireless Sensor Network Management Problem. This problem is compounded because current WSN management systems glue together unrelated protocols to provide system services causing inter-protocol interference. Bio-inspired protocols provide a good solution because they enable the nodes to self-organise, use local area communication, and can combine their communication in an intelligent way with minimal increase in communication. I present a combined protocol and MAC scheduler to enable multiple service protocols to function in a WSN at the same time without causing inter-protocol interference. The scheduler is throughput optimal as long as the communication requirements of all of the protocols remain within the communication capacity of the network. I show that the scheduler improves a dissemination protocol’s performance by 35%. A bio-inspired synchronisation service is presented which enables wireless sensor nodes to self organise and provide a time service. Evaluation of the protocol shows an 80% saving in communication over similar bio-inspired synchronisation approaches. I then add an information dissemination protocol, without significantly increasing communication. This is achieved through the ability of our bio-inspired algorithms to combine their communication in an intelligent way so that they are able to offer multiple services without requiring a great deal of inter-node communication.Open Acces
    corecore