26,449 research outputs found

    Measurement And Improvement of Quality-of-Experience For Online Video Streaming Services

    Get PDF
    Title from PDF of title page, viewed on September 4, 2015Dissertation advisor: Deep MedhiVitaIncludes bibliographic references (pages 126-141)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2015HTTP based online video streaming services have been consistently dominating the online traffic for the past few years. Measuring and improving the performance of these services is an important challenge. Traditional Quality-of-Service (QoS) metrics such as packet loss, jitter and delay which were used for networked services are not easily understood by the users. Instead, Quality-of-Experience (QoE) metrics which capture the overall satisfaction are more suitable for measuring the quality as perceived by the users. However, these QoE metrics have not yet been standardized and their measurement and improvement poses unique challenges. In this work we first present a comprehensive survey of the different set of QoE metrics and the measurement methodologies suitable for HTTP based online video streaming services. We then present our active QoE measurement tool Pytomo that measures the QoE of YouTube videos. A case study on the measurement of QoE of YouTube videos when accessed by residential users from three different Internet Service Providers (ISP) in a metropolitan area is discussed. This is the first work that has collected QoE data from actual residential users using active measurements for YouTube videos. Based on these measurements we were able to study and compare the QoE of YouTube videos across multiple ISPs. We also were able to correlate the QoE observed with the server clusters used for the different users. Based on this correlation we were able to identify the server clusters that were experiencing diminished QoE. DynamicAdaptive Streaming overHTTP (DASH) is an HTTP based video streaming that enables the video players to adapt the video quality based on the network conditions. We next present a rate adaptation algorithm that improves the QoE of DASH video streaming services that selects the most optimum video quality. With DASH the video server hosts multiple representation of the same video and each representation is divided into small segments of constant playback duration. The DASH player downloads the appropriate representation based on the network conditions, thus, adapting the video quality to match the conditions. Currently deployed Adaptive Bitrate (ABR) algorithms use throughput and buffer occupancy to predict segment fetch times. These algorithms assume that the segments are of equal size. However, due to the encoding schemes employed this assumption does not hold. In order to overcome these limitations, we propose a novel Segment Aware Rate Adaptation algorithm (SARA) that leverages the knowledge of the segment size variations to improve the prediction of segment fetch times. Using an emulated player in a geographically distributed virtual network setup, we compare the performance of SARA with existing ABR algorithms. We demonstrate that SARA helps to improve the QoE of the DASH video streaming with improved convergence time, better bitrate switching performance and better video quality. We also show that unlike the existing adaptation schemes, SARA provides a consistent QoE irrespective of the segment size distributions.Introduction -- Measurement of QoE for Online Video Streaming Services: A Literature Survey -- Pytomo: A Tool for measuring QoE of YouTube Videos -- Case Study: QoE across three Internet Service Providers in a Metropolitan Area -- Adaptive Bitrate Algorithms for DASH -- Segment Aware Rate Adaptation for DASH -- Performance Evaluation of SARA -- Conclusion and Future Research --Appendix A. Sample MPD Fil

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Streaming Video QoE Modeling and Prediction: A Long Short-Term Memory Approach

    Get PDF
    HTTP based adaptive video streaming has become a popular choice of streaming due to the reliable transmission and the flexibility offered to adapt to varying network conditions. However, due to rate adaptation in adaptive streaming, the quality of the videos at the client keeps varying with time depending on the end-to-end network conditions. Further, varying network conditions can lead to the video client running out of playback content resulting in rebuffering events. These factors affect the user satisfaction and cause degradation of the user quality of experience (QoE). It is important to quantify the perceptual QoE of the streaming video users and monitor the same in a continuous manner so that the QoE degradation can be minimized. However, the continuous evaluation of QoE is challenging as it is determined by complex dynamic interactions among the QoE influencing factors. Towards this end, we present LSTM-QoE, a recurrent neural network based QoE prediction model using a Long Short-Term Memory (LSTM) network. The LSTM-QoE is a network of cascaded LSTM blocks to capture the nonlinearities and the complex temporal dependencies involved in the time varying QoE. Based on an evaluation over several publicly available continuous QoE databases, we demonstrate that the LSTM-QoE has the capability to model the QoE dynamics effectively. We compare the proposed model with the state-of-the-art QoE prediction models and show that it provides superior performance across these databases. Further, we discuss the state space perspective for the LSTM-QoE and show the efficacy of the state space modeling approaches for QoE prediction

    Dynamic optimization of the quality of experience during mobile video watching

    Get PDF
    Mobile video consumption through streaming is becoming increasingly popular. The video parameters for an optimal quality are often automatically determined based on device and network conditions. Current mobile video services typically decide on these parameters before starting the video streaming and stick to these parameters during video playback. However in a mobile environment, conditions may change significantly during video playback. Therefore, this paper proposes a dynamic optimization of the quality taking into account real-time data regarding network, device, and user movement during video playback. The optimization method is able to change the video quality level during playback if changing conditions require this. Through a user test, the dynamic optimization is compared with a traditional, static, quality optimization method. The results showed that our optimization can improve the perceived playback and video quality, especially under varying network conditions

    Quality of experience driven control of interactive media stream parameters

    Get PDF
    In recent years, cloud computing has led to many new kinds of services. One of these popular services is cloud gaming, which provides the entire game experience to the users remotely from a server, but also other applications are provided in a similar manner. In this paper we focus on the option to render the application in the cloud, thereby delivering the graphical output of the application to the user as a video stream. In more general terms, an interactive media stream is set up over the network between the user's device and the cloud server. The main issue with this approach is situated at the network, that currently gives little guarantees on the quality of service in terms of parameters such as available bandwidth, latency or packet loss. However, for interactive media stream cases, the user is merely interested in the perceived quality, regardless of the underlaying network situation. In this paper, we present an adaptive control mechanism that optimizes the quality of experience for the use case of a race game, by trading off visual quality against frame rate in function of the available bandwidth. Practical experiments verify that QoE driven adaptation leads to improved user experience compared to systems solely taking network characteristics into account
    • …
    corecore