283,437 research outputs found

    Interpretable Probabilistic Password Strength Meters via Deep Learning

    Full text link
    Probabilistic password strength meters have been proved to be the most accurate tools to measure password strength. Unfortunately, by construction, they are limited to solely produce an opaque security estimation that fails to fully support the user during the password composition. In the present work, we move the first steps towards cracking the intelligibility barrier of this compelling class of meters. We show that probabilistic password meters inherently own the capability of describing the latent relation occurring between password strength and password structure. In our approach, the security contribution of each character composing a password is disentangled and used to provide explicit fine-grained feedback for the user. Furthermore, unlike existing heuristic constructions, our method is free from any human bias, and, more importantly, its feedback has a clear probabilistic interpretation. In our contribution: (1) we formulate the theoretical foundations of interpretable probabilistic password strength meters; (2) we describe how they can be implemented via an efficient and lightweight deep learning framework suitable for client-side operability.Comment: An abridged version of this paper appears in the proceedings of the 25th European Symposium on Research in Computer Security (ESORICS) 202

    Quantitative Analysis of Opacity in Cloud Computing Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Federated cloud systems increase the reliability and reduce the cost of the computational support. The resulting combination of secure private clouds and less secure public clouds, together with the fact that resources need to be located within different clouds, strongly affects the information flow security of the entire system. In this paper, the clouds as well as entities of a federated cloud system are assigned security levels, and a probabilistic flow sensitive security model for a federated cloud system is proposed. Then the notion of opacity --- a notion capturing the security of information flow --- of a cloud computing systems is introduced, and different variants of quantitative analysis of opacity are presented. As a result, one can track the information flow in a cloud system, and analyze the impact of different resource allocation strategies by quantifying the corresponding opacity characteristics

    A discussion on the legal barriers in addressing sleeping disorders in aged care using wireless technology

    Get PDF
    [Abstract]: Disturbed sleep can affect personal well being. In the case of old people, disturbed sleep will impede recovery from any illness. Therefore, sleep quality is an essential ingredient for well being. While previous studies have provided a number of solutions based on clinical trials, it appears that 'technology' solutions are not yet caught up with the problems of sleeping specific to aged care. This 'research in progress' paper provides a conceptual model of how wireless technology solutions can provide answers to some of the monitoring problems of sleeping disorders. Based on the review conducted by the JBI on sleep research, this paper provides guidelines to future research. The paper also provides current status of regulatory issues that may affect the uptake of wireless solutions in this domain
    • …
    corecore