2,842 research outputs found

    Measuring the Evolutionary Rewiring of Biological Networks

    Get PDF
    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or “rewire”, at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of “commonplace” networks such as family trees, co-authorships and linux-kernel function dependencies

    Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments

    Get PDF
    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment

    Performance of networks of artificial neurons: The role of clustering

    Full text link
    The performance of the Hopfield neural network model is numerically studied on various complex networks, such as the Watts-Strogatz network, the Barab{\'a}si-Albert network, and the neuronal network of the C. elegans. Through the use of a systematic way of controlling the clustering coefficient, with the degree of each neuron kept unchanged, we find that the networks with the lower clustering exhibit much better performance. The results are discussed in the practical viewpoint of application, and the biological implications are also suggested.Comment: 4 pages, to appear in PRE as Rapid Com

    Network analyses of proteome evolution and diversity

    Full text link
    The mapping of biomolecular interactions reveals that the function of most biological components depends on a web of interrelations with other cellular components, stressing the need for a systems-level view of biological functions. In this work, I explore ways in which the integration of network and genomic information from different organizational levels can lead to a better understanding of cellular systems and components. First, studying yeast, I show that the evolutionary properties of target genes constitute the dominant determinant of transcription factor (TF) evolutionary rate and that this evolutionary modularity is limited to activating regulatory relationships. I also show that targets of fast-evolving TFs show greater evolutionary expression changes and are enriched for niche-specific functions and other TFs. This work highlights the importance of trans-regulatory network evolution in species-specific gene expression and network adaptation. Next, I show that genes either lost or gained across fungal evolution are enriched in TFs and have very different network and genomic properties than universally conserved genes, including, in sharp contrast to other networks, a greater number of transcriptional regulators. Placing genes in the context of their evolutionary life-cycle reveals principles of network integration of gained genes and evidence for the progressive network and functional marginalization of genes as an evolutionary process preceding gene loss. In the final chapter, I study how alternative splicing (AS)-driven expansion of human proteome diversity leads to system-level complexity through the AS-mediated rewiring of the protein-protein interaction network. By overlaying different network and genomic datasets onto the first large-scale isoform-resolution interactome, I found that differentiating between splice variants is essential to capturing the full extent of the network's functional modularity. I also discovered that AS-mediated rewiring preferentially affects tissue-specific genes and that topologically different patterns of rewiring have distinct functional consequences. Furthermore, I found that most rewiring can be traced to the AS of evolutionarily conserved sequence modules, which promote or block interactions and tend to overlap linear motifs and disrupt known domain-domain interactions. Together, this work demonstrates that a network-level perspective and genomic data integration are essential to understanding the evolution and functional diversity of proteomes
    corecore