9,245 research outputs found

    Mobile forensic triage for damaged phones using M_Triage

    Get PDF
    Mobile forensics triage is a useful technique in a digital forensics investigation for recovering lost or purposely deleted and hidden files from digital storage. It is particularly useful, especially when solving a very sensitive crime, for example, kidnapping, in a timely manner. However, the existing mobile forensics triage tools do not consider performing a triage examination on damaged mobile phones. This research addressed the issues of performing triage examination on damaged Android mobile phones and reduction of false positive result generated by the current mobile forensics triage tools. Furthermore, the research addressed the issues of ignoring possible evidence residing in a bad block memory location. In this research a new forensics triage tool called M_Triage was introduced by extending Decode’s framework to handle data retrieval challenges on damaged Android mobile phones. The tool was designed to obtain evidence quickly and accurately (i.e. valid address book, call logs, SMS, images, and, videos, etc.) on Android damaged mobile phones. The tool was developed using C#, while back end engines was done using C programming and tested using five data sets. Based on the computational time processing comparison with Dec0de, Lifter, XRY and Xaver, the result showed that there was 75% improvement over Dec0de, 36% over Lifter, 28% over XRY and finally 71% over Xaver. Again, based on the experiment done on five data sets, M_Triage was capable of carving valid address book, call logs, SMS, images and videos as compared to Dec0de, Lifter, XRY and Xaver. With the average improvement of 90% over DEC0DE, 30% over Lifter, 40% over XRY and lastly 61% over Xaver. This shows that M_Triage is a better tool to be used because it saves time, carve more relevant files and less false positive result are achieved with the tool

    Mobile forensic triage for damaged phones using M_Triage

    Get PDF
    Mobile forensics triage is a useful technique in a digital forensics investigation for recovering lost or purposely deleted and hidden files from digital storage. It is particularly useful, especially when solving a very sensitive crime, for example, kidnapping, in a timely manner. However, the existing mobile forensics triage tools do not consider performing a triage examination on damaged mobile phones. This research addressed the issues of performing triage examination on damaged Android mobile phones and reduction of false positive result generated by the current mobile forensics triage tools. Furthermore, the research addressed the issues of ignoring possible evidence residing in a bad block memory location. In this research a new forensics triage tool called M_Triage was introduced by extending Decode’s framework to handle data retrieval challenges on damaged Android mobile phones. The tool was designed to obtain evidence quickly and accurately (i.e. valid address book, call logs, SMS, images, and, videos, etc.) on Android damaged mobile phones. The tool was developed using C#, while back end engines was done using C programming and tested using five data sets. Based on the computational time processing comparison with Dec0de, Lifter, XRY and Xaver, the result showed that there was 75% improvement over Dec0de, 36% over Lifter, 28% over XRY and finally 71% over Xaver. Again, based on the experiment done on five data sets, M_Triage was capable of carving valid address book, call logs, SMS, images and videos as compared to Dec0de, Lifter, XRY and Xaver. With the average improvement of 90% over DEC0DE, 30% over Lifter, 40% over XRY and lastly 61% over Xaver. This shows that M_Triage is a better tool to be used because it saves time, carve more relevant files and less false positive result are achieved with the tool

    Safe Robotic Grasping: Minimum Impact-Force Grasp Selection

    Full text link
    This paper addresses the problem of selecting from a choice of possible grasps, so that impact forces will be minimised if a collision occurs while the robot is moving the grasped object along a post-grasp trajectory. Such considerations are important for safety in human-robot interaction, where even a certified "human-safe" (e.g. compliant) arm may become hazardous once it grasps and begins moving an object, which may have significant mass, sharp edges or other dangers. Additionally, minimising collision forces is critical to preserving the longevity of robots which operate in uncertain and hazardous environments, e.g. robots deployed for nuclear decommissioning, where removing a damaged robot from a contaminated zone for repairs may be extremely difficult and costly. Also, unwanted collisions between a robot and critical infrastructure (e.g. pipework) in such high-consequence environments can be disastrous. In this paper, we investigate how the safety of the post-grasp motion can be considered during the pre-grasp approach phase, so that the selected grasp is optimal in terms applying minimum impact forces if a collision occurs during a desired post-grasp manipulation. We build on the methods of augmented robot-object dynamics models and "effective mass" and propose a method for combining these concepts with modern grasp and trajectory planners, to enable the robot to achieve a grasp which maximises the safety of the post-grasp trajectory, by minimising potential collision forces. We demonstrate the effectiveness of our approach through several experiments with both simulated and real robots.Comment: To be appeared in IEEE/RAS IROS 201

    Design of an Anthropomorphic, Compliant, and Lightweight Dual Arm for Aerial Manipulation

    Get PDF
    This paper presents an anthropomorphic, compliant and lightweight dual arm manipulator designed and developed for aerial manipulation applications with multi-rotor platforms. Each arm provides four degrees of freedom in a human-like kinematic configuration for end effector positioning: shoulder pitch, roll and yaw, and elbow pitch. The dual arm, weighting 1.3 kg in total, employs smart servo actuators and a customized and carefully designed aluminum frame structure manufactured by laser cut. The proposed design reduces the manufacturing cost as no computer numerical control machined part is used. Mechanical joint compliance is provided in all the joints, introducing a compact spring-lever transmission mechanism between the servo shaft and the links, integrating a potentiometer for measuring the deflection of the joints. The servo actuators are partially or fully isolated against impacts and overloads thanks to the ange bearings attached to the frame structure that support the rotation of the links and the deflection of the joints. This simple mechanism increases the robustness of the arms and safety in the physical interactions between the aerial robot and the environment. The developed manipulator has been validated through different experiments in fixed base test-bench and in outdoor flight tests.UniĂłn Europea H2020-ICT-2014- 644271Ministerio de EconomĂ­a y Competitividad DPI2015-71524-RMinisterio de EconomĂ­a y Competitividad DPI2017-89790-
    • …
    corecore