6,486 research outputs found

    GEO-BLEU: Similarity Measure for Geospatial Sequences

    Full text link
    In recent geospatial research, the importance of modeling large-scale human mobility data and predicting trajectories is rising, in parallel with progress in text generation using large-scale corpora in natural language processing. Whereas there are already plenty of feasible approaches applicable to geospatial sequence modeling itself, there seems to be room to improve with regard to evaluation, specifically about measuring the similarity between generated and reference trajectories. In this work, we propose a novel similarity measure, GEO-BLEU, which can be especially useful in the context of geospatial sequence modeling and generation. As the name suggests, this work is based on BLEU, one of the most popular measures used in machine translation research, while introducing spatial proximity to the idea of n-gram. We compare this measure with an established baseline, dynamic time warping, applying it to actual generated geospatial sequences. Using crowdsourced annotated data on the similarity between geospatial sequences collected from over 12,000 cases, we quantitatively and qualitatively show the proposed method's superiority

    Arm Motion Classification Using Curve Matching of Maximum Instantaneous Doppler Frequency Signatures

    Full text link
    Hand and arm gesture recognition using the radio frequency (RF) sensing modality proves valuable in manmachine interface and smart environment. In this paper, we use curve matching techniques for measuring the similarity of the maximum instantaneous Doppler frequencies corresponding to different arm gestures. In particular, we apply both Frechet and dynamic time warping (DTW) distances that, unlike the Euclidean (L2) and Manhattan (L1) distances, take into account both the location and the order of the points for rendering two curves similar or dissimilar. It is shown that improved arm gesture classification can be achieved by using the DTW method, in lieu of L2 and L1 distances, under the nearest neighbor (NN) classifier.Comment: 6 pages, 7 figures, 2020 IEEE radar conference. arXiv admin note: substantial text overlap with arXiv:1910.1117

    DancingLines: An Analytical Scheme to Depict Cross-Platform Event Popularity

    Full text link
    Nowadays, events usually burst and are propagated online through multiple modern media like social networks and search engines. There exists various research discussing the event dissemination trends on individual medium, while few studies focus on event popularity analysis from a cross-platform perspective. Challenges come from the vast diversity of events and media, limited access to aligned datasets across different media and a great deal of noise in the datasets. In this paper, we design DancingLines, an innovative scheme that captures and quantitatively analyzes event popularity between pairwise text media. It contains two models: TF-SW, a semantic-aware popularity quantification model, based on an integrated weight coefficient leveraging Word2Vec and TextRank; and wDTW-CD, a pairwise event popularity time series alignment model matching different event phases adapted from Dynamic Time Warping. We also propose three metrics to interpret event popularity trends between pairwise social platforms. Experimental results on eighteen real-world event datasets from an influential social network and a popular search engine validate the effectiveness and applicability of our scheme. DancingLines is demonstrated to possess broad application potentials for discovering the knowledge of various aspects related to events and different media

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach
    corecore