70,027 research outputs found

    The Usage and Evaluation of Anthropomorphic Form in Robot Design

    Get PDF
    There are numerous examples illustrating the application of human shape in everyday products. Usage of anthropomorphic form has long been a basic design strategy, particularly in the design of intelligent service robots. As such, it is desirable to use anthropomorphic form not only in aesthetic design but also in interaction design. Proceeding from how anthropomorphism in various domains has taken effect on human perception, we assumed that anthropomorphic form used in appearance and interaction design of robots enriches the explanation of its function and creates familiarity with robots. From many cases we have found, misused anthropomorphic form lead to user disappointment or negative impressions on the robot. In order to effectively use anthropomorphic form, it is necessary to measure the similarity of an artifact to the human form (humanness), and then evaluate whether the usage of anthropomorphic form fits the artifact. The goal of this study is to propose a general evaluation framework of anthropomorphic form for robot design. We suggest three major steps for framing the evaluation: 'measuring anthropomorphic form in appearance', 'measuring anthropomorphic form in Human-Robot Interaction', and 'evaluation of accordance of two former measurements'. This evaluation process will endow a robot an amount of humanness in their appearance equivalent to an amount of humanness in interaction ability, and then ultimately facilitate user satisfaction. Keywords: Anthropomorphic Form; Anthropomorphism; Human-Robot Interaction; Humanness; Robot Design</p

    Complexity models in design

    Get PDF
    Complexity is a widely used term; it has many formal and informal meanings. Several formal models of complexity can be applied to designs and design processes. The aim of the paper is to examine the relation between complexity and design. This argument runs in two ways. First designing provides insights into how to respond to complex systems – how to manage, plan and control them. Second, the overwhelming complexity of many design projects lead us to examine how better understanding of complexity science can lead to improved designs and processes. This is the focus of this paper. We start with an outline of some observations on where complexity arises in design, followed by a brief discussion of the development of scientific and formal conceptions of complexity. We indicate how these can help in understanding design processes and improving designs

    Position paper on realizing smart products: challenges for Semantic Web technologies

    Get PDF
    In the rapidly developing space of novel technologies that combine sensing and semantic technologies, research on smart products has the potential of establishing a research field in itself. In this paper, we synthesize existing work in this area in order to define and characterize smart products. We then reflect on a set of challenges that semantic technologies are likely to face in this domain. Finally, in order to initiate discussion in the workshop, we sketch an initial comparison of smart products and semantic sensor networks from the perspective of knowledge technologies

    A Qualitative Method for Assessing the Impact of ICT on the Architectural Design Process

    Get PDF
    During the last thirty years or so, we have witnessed tremendous developments in information and communication technology (ICT). Computer processing power doubles each 18 months, as Gordon Moore predicted during the mid-1960s. The computer and communications world has been revolutionised by the invention of the Internet. It has changed the way of exchanging, viewing, sharing, manipulating and storing the information. Other technologies such as smartphones, wearable computers, tablets, wireless communications and satellite communications have made the adoption of ICT easier and beneficial to all its users. ICT affects the productivity, performance and the competitive advantage of a business. It also impacts on the shape of the business process and its product. In architectural design, ICT is widely used throughout the design process and its final product. The aim of this research, therefore, is to explore the key implication of using ICT in architectural design and what new changes and forms have occurred on buildings as a result of ICT developments and use by architecture practitioners. To achieve this aim, a qualitative research approach was adopted using a narrative review of ICT usage in the design of buildings. The literature found was subjected to a thematic analysis of how ICT adoption affected the architectural design process. The findings of this research indicate that there is a continuous change in the design process and its final products (buildings) as the technology evolves. The framework proposed provides a foundation for gathering evidence from case studies of the impact of ICT adoption by architectural designers. The research proposes that future empirical work has to be conducted to test and refine the relevance, importance and applicability of each of the components of the framework, in order to detect the impact of ICT on the building design process and its final product

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Towards a kansei-based user modeling methodology for eco-design

    Get PDF
    We propose here to highlight the benefits of building a framework linking Kansei Design (KD), User Centered Design (UCD) and Eco-design, as the correlation between these fields is barely explored in research at the current time. Therefore, we believe Kansei Design could serve the goal of achieving more sustainable products by setting up an accurate understanding of the user in terms of ecological awareness, and consequently enhancing performance in the Eco-design process. In the same way, we will consider the means-end chain approach inspired from marketing research, as it is useful for identifying ecological values, mapping associated functions and defining suitable design solutions. Information gathered will serve as entry data for conducting scenario-based design, and supporting the development of an Eco-friendly User Centered Design methodology (EcoUCD).ANR-ECOUS
    corecore