29 research outputs found

    T-MAN: gossip-based overlay topology management

    Get PDF
    Syftet med specialarbetet Àr att presentera genren allÄldersböcker samt att ge litteraturtips till den intresserade lÀsaren. Med en kortfattad definition innebÀr begreppet allÄldersböcker böcker som kan lÀsas med lika stor behÄllning av sÄvÀl barn och ungdom som vuxna lÀsare. Specialarbetet inleds med utdrag ur olika intervjuer som jag gjort med fackmÀnniskor i bokvÀrlden. Sedan följer ett fyrtiotal annotationer som jag skrivit efter att ha lÀst dessa allÄldersböcker. Bokurvalet har gjorts efter rekommendationer av ovannÀmnda personer. Slutligen följer en förteckning över icke-annoterad allÄlderslitteratur som valts ut enligt samma principer som de övriga verken

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Distributed Algorithms for Location Based Services

    Get PDF
    Real-time localization services are some of the most challenging and interesting mobile broadband applications in the Location Based Services (LBS) world. They are gaining more and more importance for a broad range of applications, such as road/highway monitoring, emergency management, social networking, and advertising. This Ph.D. thesis focuses on the problem of defining a new category of decentralized peer-to-peer (P2P) algorithms for LBS. We aim at defining a P2P overlay where each participant can efficiently retrieve node and resource information (data or services) located near any chosen geographic position. The idea is that the responsibility and the required resources for maintaining information about position of active users are properly distributed among nodes, for which a change in the set of participants causes only a minimal amount of disruption without reducing the quality of provided services. In this thesis we will assess the validity of the proposed model through a formal analysis of the routing protocol and a detailed simulative investigation of the designed overlay. We will depict a complete picture of involved parameters, how they affect the performance and how they can be configured to adapt the protocol to the requirements of several location based applications. Furthermore we will present two application scenarios (a smartphone based Traffic Information System and a large information management system for a SmartCity) where the designed protocol has been simulated and evaluated, as well as the first prototype of a real implementation of the overlay using both traditional PC nodes and Android mobile devices

    Large-Scale Distributed Coalition Formation

    Get PDF
    The CyberCraft project is an effort to construct a large scale Distributed Multi-Agent System (DMAS) to provide autonomous Cyberspace defense and mission assurance for the DoD. It employs a small but flexible agent structure that is dynamically reconfigurable to accommodate new tasks and policies. This document describes research into developing protocols and algorithms to ensure continued mission execution in a system of one million or more agents, focusing on protocols for coalition formation and Command and Control. It begins by building large-scale routing algorithms for a Hierarchical Peer to Peer structured overlay network, called Resource-Clustered Chord (RC-Chord). RC-Chord introduces the ability to efficiently locate agents by resources that agents possess. Combined with a task model defined for CyberCraft, this technology feeds into an algorithm that constructs task coalitions in a large-scale DMAS. Experiments reveal the flexibility and effectiveness of these concepts for achieving maximum work throughput in a simulated CyberCraft environment

    An empirical comparison of the security and performance characteristics of topology formation algorithms for Bitcoin networks

    Get PDF
    There is an increasing demand for digital crypto-currencies to be more secure and robust to meet the following business requirements: (1) low transaction fees and (2) the privacy of users. Nowadays, Bitcoin is gaining traction and wide adoption. Many well-known businesses have begun accepting bitcoins as a means of making financial payments. However, the susceptibility of Bitcoin networks to information propagation delay, increases the vulnerability to attack of the Bitcoin network, and decreases its throughput performance. This paper introduces and critically analyses new network clustering methods, named Locality Based Clustering (LBC), Ping Time Based Approach (PTBC), Super Node Based Clustering (SNBA), and Master Node Based Clustering (MNBC). The proposed methods aim to decrease the chances of performing a successful double spending attack by reducing the information propagation delay of Bitcoin. These methods embody proximity-aware extensions to the standard Bitcoin protocol, where proximity is measured geographically and in terms of latency. We validate our proposed methods through a set of simulation experiments and the findings show how the proposed methods run and their impact in optimising the transaction propagation delay. Furthermore, these new methods are evaluated from the perspective of the Bitcoin network’s resistance to partitioning attacks. Numerical results, which are established via extensive simulation experiments, demonstrate how the extensions run and also their impact in optimising the transaction propagation delay. We draw on these findings to suggest promising future research directions for the optimisation of transaction propagation delays
    corecore