331 research outputs found

    Pattern-sensitive Time-series Anonymization and its Application to Energy-Consumption Data

    Get PDF
    Time series anonymization is an important problem. One prominent example of time series are energy consumption records, which might reveal details of the daily routine of a household. Existing privacy approaches for time series, e.g., from the field of trajectory anonymization, assume that every single value of a time series contains sensitive information and reduce the data quality very much. In contrast, we consider time series where it is combinations of tuples that represent personal information. We propose (n; l; k)-anonymity, geared to anonymization of time-series data with minimal information loss, assuming that an adversary may learn a few data points. We propose several heuristics to obtain (n; l; k)-anonymity, and we evaluate our approach both with synthetic and real data. Our experiments confirm that it is sufficient to modify time series only moderately in order to fulfill meaningful privacy requirements

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Technical Privacy Metrics: a Systematic Survey

    Get PDF
    The file attached to this record is the author's final peer reviewed versionThe goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes an informed choice of metrics challenging. As a result, instead of using existing metrics, new metrics are proposed frequently, and privacy studies are often incomparable. In this survey we alleviate these problems by structuring the landscape of privacy metrics. To this end, we explain and discuss a selection of over eighty privacy metrics and introduce categorizations based on the aspect of privacy they measure, their required inputs, and the type of data that needs protection. In addition, we present a method on how to choose privacy metrics based on nine questions that help identify the right privacy metrics for a given scenario, and highlight topics where additional work on privacy metrics is needed. Our survey spans multiple privacy domains and can be understood as a general framework for privacy measurement

    Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping

    Full text link
    Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing smart city infrastructures. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus of this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared as opposed to sharing data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system is evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed

    Centralizing Energy Consumption Data in State Energy Data Centers

    Get PDF

    Understanding Compressive Adversarial Privacy

    Full text link
    Designing a data sharing mechanism without sacrificing too much privacy can be considered as a game between data holders and malicious attackers. This paper describes a compressive adversarial privacy framework that captures the trade-off between the data privacy and utility. We characterize the optimal data releasing mechanism through convex optimization when assuming that both the data holder and attacker can only modify the data using linear transformations. We then build a more realistic data releasing mechanism that can rely on a nonlinear compression model while the attacker uses a neural network. We demonstrate in a series of empirical applications that this framework, consisting of compressive adversarial privacy, can preserve sensitive information
    • …
    corecore