101,119 research outputs found

    Measuring non-linear dependence for two random variables distributed along a curve

    Get PDF
    The final publication is available at link.springer.comWe propose new dependence measures for two real random variables not necessarily linearly related. Covariance and linear correlation are expressed in terms of principal components and are generalized for variables distributed along a curve. Properties of these measures are discussed. The new measures are estimated using principal curves and are computed for simulated and real data sets. Finally, we present several statistical applications for the new dependence measures.Peer ReviewedPostprint (author's final draft

    Measuring nonlocal Lagrangian peak bias

    Full text link
    We investigate nonlocal Lagrangian bias contributions involving gradients of the linear density field, for which we have predictions from the excursion set peak formalism. We begin by writing down a bias expansion which includes all the bias terms, including the nonlocal ones. Having checked that the model furnishes a reasonable fit to the halo mass function, we develop a 1-point cross-correlation technique to measure bias factors associated with 2-distributed quantities. We validate the method with numerical realizations of peaks of Gaussian random fields before we apply it to N-body simulations. We focus on the lowest (quadratic) order nonlocal contributions. We can reproduce our measurement of \chi_{10} if we allow for an offset between the Lagrangian halo center-of-mass and the peak position. The sign and magnitude of \chi_{10} is consistent with Lagrangian haloes sitting near linear density maxima. The resulting contribution to the halo bias can safely be ignored for M = 10^13 Msun/h, but could become relevant at larger halo masses. For the second nonlocal bias \chi_{01} however, we measure a much larger magnitude than predicted by our model. We speculate that some of this discrepancy might originate from nonlocal Lagrangian contributions induced by nonspherical collapse.Comment: (v2): presentation clarified. agreement with the simulation improved. accepted for publication. 11 pages, 8 figure

    Growing dynamical length, scaling and heterogeneities in the 3d Edwards-Anderson model

    Full text link
    We study numerically spatio-temporal fluctuations during the out-of-equilibrium relaxation of the three-dimensional Edwards-Anderson model. We focus on two issues. (1) The evolution of a growing dynamical length scale in the glassy phase of the model, and the consequent collapse of the distribution of local coarse-grained correlations measured at different pairs of times on a single function using {\it two} scaling parameters, the value of the global correlation at the measuring times and the ratio of the coarse graining length to the dynamical length scale (in the thermodynamic limit). (2) The `triangular' relation between coarse-grained local correlations at three pairs of times taken from the ordered instants t3≤t2≤t1t_3 \leq t_2 \leq t_1. Property (1) is consistent with the conjecture that the development of time-reparametrization invariance asymptotically is responsible for the main dynamic fluctuations in aging glassy systems as well as with other mechanisms proposed in the literature. Property (2), we stress, is a much stronger test of the relevance of the time-reparametrization invariance scenario.Comment: 24 pages, 12 fig
    • …
    corecore