825 research outputs found

    Towards efficient structure prediction and pre-compensation in multi-photon lithography

    Full text link
    Microscale 3D printing technologies have been of increasing interest in industry and research for several years. Unfortunately, the fabricated structures always deviate from the respective expectations, often caused by the physico-chemical properties during and after the printing process. Here, we show first steps towards a simple, fast and easy to implement algorithm to predict the final structure topography for multi-photon lithography - also known as Direct Laser Writing (DLW). The three main steps of DLW, (i) exposure of a photo resin, (ii) cross-linking of the resin, and (iii) subsequent shrinkage are approximated by mathematical operations, showing promising results in coincidence with experimental observations. E.g., the root-mean-square error (rmse) between the unmodified 3D print of a radial-symmetrically chirped topography and our predicted topography is only 0.46 ÎĽ\mum, whereas the rmse between this 3D print and its target is 1.49 ÎĽ\mum. Thus, our robust predictions can be used prior to the printing process to minimize undesired deviations between the target structure and the final 3D printed structure. Using a Downhill-Simplex algorithm for identifying the optimal prediction parameters, we were able to reduce the rmse from 4.04 ÎĽ\mum to 0.33 ÎĽ\mum by only two correction loops in our best-case scenario (rmse = 0.72 ÎĽ\mum after one loop). Consequently, this approach can eliminate the need for many structural optimization loops to produce highly conformal and high quality micro structures in the future

    Verification of Tolerance Chains in Micro Manufacturing

    Get PDF

    Multiscale Mechanistic Approach to Enhance Pool Boiling Performance for High Heat Flux Applications

    Get PDF
    The advent of cloud computing and the complex packaging architecture of next generation electronic devices drives methods for advanced thermal management solutions. Convection based single-phase cooling systems are inefficient due to their large pressure drops, fluid temperature differences and costs, and are incapable of meeting the cooling requirements in the high power density components and systems. Alternatively, phase-change cooling techniques are attractive due to their ability to remove large amounts of heat while maintaining uniform fluid temperatures. Pool boiling heat transfer mechanism centers on the nucleation, growth and departure of a bubble from the heat transfer surface in a stagnant pool of liquid. The pool boiling performance is quantified by the Critical Heat Flux (CHF) and Heat Transfer Coefficients (HTC) which dictate the operating ranges and efficiency of the heat transfer process. In this work, three novel geometries are introduced to modify the nucleation characteristics, liquid pathways and contact line motion on the prime heater surface for a simultaneous increase in CHF and HTC. First, sintered microchannels and nucleating region with feeder channels (NRFC) were developed through the mechanistic concept of separate liquid-vapor pathways and enhanced macroconvection heat transfer. A maximum CHF of 420 W/cm2 at a wall superheat of 1.7 °C with a HTC of 2900 MW/m2°C was achieved with the sintered-channels configuration, while the NRFC reached a CHF of 394 W/cm2 with a HTC of 713 kW/m2°C. Second, the scale effect of liquid wettability, roughness and microlayer evaporation was exploited to facilitate capillary wicking in graphene through interlaced porous copper particles. A CHF of 220 W/cm2 with a HTC of 155 kW/m2°C was achieved using an electrodeposition coating technique. Third, the chemical heterogeneity on nanoscale coatings was shown to increase the contribution from transient conduction mechanisms. A maximum CHF of 226 W/cm2 with a HTC of 107 kW/m2°C was achieved. The enhancement techniques developed here provide a mechanistic tool at the microscale and nanoscale to increase the boiling CHF and HTC

    Examining the relationship of variables related to litigation regarding students with significant cognitive disabilities

    Get PDF
    Non-null interferometry offers a viable alternative to traditional interferometric testing of aspheric micro-lenses since computer generated holograms or null optics whose fabrication and testing are very expensive, are not required. However, due to the violation of the Nyquist sampling theorem these non-null tests provide limited dynamic range. The dynamic range of these non-null tests can be extended by implementing an index liquid which allows the measurement of micro-lenses with several microns of departure from a sphere. The first objective of this dissertation was to test important micro-lens properties such as the sag, radius of curvature and form errors for a micro-lens by using an index liquid. The results compared favorably to measurements taken on a Twyman-Green interferometer, a contact profilometer and an optical non-contact profilometer. Also, retrace errors, which are aberrations caused by altered ray paths of the test beam through a micro-lens were investigated. Reverse ray-trace and reverse optimization techniques are typically used to calibrate retrace errors, but in depth knowledge of the interferometer optics is assumed, and hence cannot be used for systems containing commercial optics. In this dissertation, re-trace errors are quantified and a novel calibration procedure derived to experimentally compensate for these errors. This retrace error calibration led to agreement of within 1% for the sag values between the index liquid technique and a profilometer. The second objective of this dissertation was to enable measurements of arbitrary geometries and to reduce testing time compared to profilometry. The index liquid technique was applied to faceted microstructured optical products which are becoming more widespread due to advances in manufacturing. Many of these structures contain faceted surfaces with steep slopes. Adequate metrology for such surfaces is lacking. The use of the index liquid technique achieved high quality, high speed measurements of such faceted microstructures. Refraction is accounted for at the interfaces, rather than consider only optical path length changes due to the index liquid, and this significantly improves the facet angle measurement. The technique is demonstrated with the measurement of an array of micro-pyramids and show that our results are in good agreement with measurements taken on a contact profilometer. The index liquid measurements took approximately five seconds to complete compared to a measurement time of six hours for the contact profilometer. The technique was also extended to measure opaque micro-corner cubes by implementing an intermediate replication step. This allowed a measurement of the angle between facets of a nickel micro-corner cube hexagonal array, a combination not previously demonstrated in the literature. A first order uncertainty analysis was carried out on the index liquid technique to determine any limiting factors that need to be taken into account when assessing such parameters as the sag and facet angle. The uncertainties in the sag and facet angle were found to be well below 1%. Lastly secondary factors such interferometer bias, refraction, masking effects and pixel calibration were investigated to understand the possible implications on the sag and facet angle calculation

    Combined imaging and chromatic confocal microscopy technique to characterize size and shape of ensembles of cuboidal particles

    Get PDF
    The presence of needle- and plate-like particles has detrimental consequences on their downstream processing in the fine chemicals sector. Therefore, the ability to accurately characterize the particle size and shape is essential to quantify and predict their impact on the product processability. Nonetheless, tools to characterize both the size and shape of ensembles of cuboidal particles are seldom available. The overarching goal of this work is to provide a fast and accurate offline size and shape characterization tool. To this aim, we have designed and experimentally validated a combined imaging and chromatic confocal microscopy technique. We propose two modes of operation: one that facilitates the accurate 3D reconstruction of particles; and the other that facilitates their rapid characterization. We validate the performance of our technique using a commercial technique. We show that our technique can accurately characterize thousands of particles, making it a valuable addition to existing process analytical technology

    Development of a traceability route for areal surface texture measurements

    Get PDF
    Modern manufacturing industry is beginning to benefit from the ability to control the three dimensional, or areal, structure of a surface. To underpin areal surface manufacturing, a traceable measurement infrastructure is necessary. In this thesis a practical realisation of areal surface traceability is presented, which includes the development of: a primary in-strument, methodologies for using the primary instrument to calibrate material measure-ment standards used as standard transfer artefacts, and the process of transferring this traceability to industrial users of stylus and optical instruments. The design of the primary instrument and its complex measurement uncertainty model are described, including detailed analysis of the input parameters of the uncertainty model and their effect on the co-ordinate measurements of the instrument. The development of the process of transferring the areal traceability to industrial users lead to a set of metrological characteristics applicable to all areal surface topography measuring instruments. The set of metrological characteristics, now included into international stand-ards, comprise of: measurement noise, flatness deviation, amplification, linearity and squareness, and resolution. Despite the differences in operation of the various types of in-strument, the idea behind this set of metrological characteristics is based on the fact that these instruments produce three dimensional data sets of points, which is a new approach in the field. Metrological characteristics are quantities that can be measured directly, gener-ally using calibrated material measures. The development of standard methodologies for calibrating the metrological characteristics, and the explicit relationship between the metro-logical characteristics and the measurement uncertainty associated with the co-ordinate measurements provided by the instrument is presented. Many of the techniques described in this thesis are now being discussed for inclusion into international standards

    A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume

    Get PDF
    With a highly coherent, optically addressable electron spin, the nitrogen-vacancy (NV) center in diamond is a promising candidate for a node in a quantum network. A resonant microcavity can boost the flux of coherent photons emerging from single NV centers. Here, we present an open Fabry–Pérot microcavity geometry containing a single-crystal diamond membrane, which operates in a regime where the vacuum electric field is strongly confined to the diamond membrane. There is a field anti-node at the diamond–air interface. Despite the presence of surface losses, a finesse of ℱ=11500 was observed. The quality
    • …
    corecore