4,798 research outputs found

    Gyrotactic phytoplankton in laminar and turbulent flows: a dynamical systems approach

    Full text link
    Gyrotactic algae are bottom heavy, motile cells whose swimming direction is determined by a balance between a buoyancy torque directing them upwards and fluid velocity gradients. Gyrotaxis has, in recent years, become a paradigmatic model for phytoplankton motility in flows. The essential attractiveness of this peculiar form of motility is the availability of a mechanistic description which, despite its simplicity, revealed predictive, rich in phenomenology, easily complemented to include the effects of shape, feed-back on the fluid and stochasticity (e.g. in cell orientation). In this review we consider recent theoretical, numerical and experimental results to discuss how, depending on flow properties, gyrotaxis can produce inhomogeneous phytoplankton distributions on a wide range of scales, from millimeters to kilometers, in both laminar and turbulent flows. In particular, we focus on the phenomenon of gyrotactic trapping in nonlinear shear flows and in fractal clustering in turbulent flows. We shall demonstrate the usefulness of ideas and tools borrowed from dynamical systems theory in explaining and interpreting these phenomena

    The Madagascar Bloom – a serendipitous study

    Get PDF
    The late austral summer (February-April) phytoplankton bloom that occurs east of Madagascar exhibits significant interannual variability and at its largest extent covers ~1% of the world’s ocean surface area. The bloom raises many intriguing questions about how it begins, is sustained, propagates to the east, exports carbon and ends. It has been observed and studied using satellite ocean color observations, but the lack of in situ data makes it difficult to address these questions. Here we describe observations that were made serendipitously on a cruise in February 2005. These show clearly for the first time the simultaneous existence of a deep chlorophyll maximum at ~70-110 m depths (seen in SeaSoar fluorimeter data) and a surface chlorophyll signature (seen in SeaWiFS satellite ocean color data). The observations also show the modulation of biological signature at the surface by the eddy field, but not of the deep chlorophyll maximum. Trichodesmium dominates the bloom nearer to Madagascar, while the diatom Rhizosolenia clevei (and its symbiont Richelia intracellularis) dominates further from the island. The surface bloom seen in the SeaWiFS data is confined to the shallow (~30 m) mixed layer. It is hypothesized that the interannual variability in bloom intensity may be due to variations in coastal upwelling and thus the supply of iron, which is a micronutrient that can limit diazotroph growth

    An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    Get PDF
    The author has identified the following significant results. Photo-optical additive color quantitative measurements were made of ERTS-1 reprocessed positives of New York Bight and Block Island Sound. Regression of these data on almost simultaneous ship sample data of water's physical, chemical, biological, and optical properties showed that ERTS bands 5 and 6 can be used to predict the absolute value of the total number of particles and bands 4 and 5 to predict the relative extinction coefficient in New York Bight. Water masses and mixing patterns in Block Island Sound heretofore considered transient were found to be persistent phenomena requiring revision of existing mathematical and hydraulic models

    Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

    Get PDF
    Highlights: ‱ A High Resolution-LOPC and a FlowCAM were evaluated for ballast water monitoring. ‱ Both instruments underestimated density compared to microscopy. ‱ Size measurements can be affected by organism orientation and complex morphology. ‱ Both tools might be particularly useful when working with a known community. Abstract: Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≄ 50 ÎŒm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles that might be particularly useful if correction factors can be developed for known differences in well-studied aquatic ecosystems
    • 

    corecore