7,297 research outputs found

    On sampling social networking services

    Full text link
    This article aims at summarizing the existing methods for sampling social networking services and proposing a faster confidence interval for related sampling methods. It also includes comparisons of common network sampling techniques

    Multiscale mixing patterns in networks

    Full text link
    Assortative mixing in networks is the tendency for nodes with the same attributes, or metadata, to link to each other. It is a property often found in social networks manifesting as a higher tendency of links occurring between people with the same age, race, or political belief. Quantifying the level of assortativity or disassortativity (the preference of linking to nodes with different attributes) can shed light on the factors involved in the formation of links and contagion processes in complex networks. It is common practice to measure the level of assortativity according to the assortativity coefficient, or modularity in the case of discrete-valued metadata. This global value is the average level of assortativity across the network and may not be a representative statistic when mixing patterns are heterogeneous. For example, a social network spanning the globe may exhibit local differences in mixing patterns as a consequence of differences in cultural norms. Here, we introduce an approach to localise this global measure so that we can describe the assortativity, across multiple scales, at the node level. Consequently we are able to capture and qualitatively evaluate the distribution of mixing patterns in the network. We find that for many real-world networks the distribution of assortativity is skewed, overdispersed and multimodal. Our method provides a clearer lens through which we can more closely examine mixing patterns in networks.Comment: 11 pages, 7 figure

    Provable and practical approximations for the degree distribution using sublinear graph samples

    Full text link
    The degree distribution is one of the most fundamental properties used in the analysis of massive graphs. There is a large literature on graph sampling, where the goal is to estimate properties (especially the degree distribution) of a large graph through a small, random sample. The degree distribution estimation poses a significant challenge, due to its heavy-tailed nature and the large variance in degrees. We design a new algorithm, SADDLES, for this problem, using recent mathematical techniques from the field of sublinear algorithms. The SADDLES algorithm gives provably accurate outputs for all values of the degree distribution. For the analysis, we define two fatness measures of the degree distribution, called the hh-index and the zz-index. We prove that SADDLES is sublinear in the graph size when these indices are large. A corollary of this result is a provably sublinear algorithm for any degree distribution bounded below by a power law. We deploy our new algorithm on a variety of real datasets and demonstrate its excellent empirical behavior. In all instances, we get extremely accurate approximations for all values in the degree distribution by observing at most 1%1\% of the vertices. This is a major improvement over the state-of-the-art sampling algorithms, which typically sample more than 10%10\% of the vertices to give comparable results. We also observe that the hh and zz-indices of real graphs are large, validating our theoretical analysis.Comment: Longer version of the WWW 2018 submissio

    Exploring the assortativity-clustering space of a network's degree sequence

    Full text link
    Nowadays there is a multitude of measures designed to capture different aspects of network structure. To be able to say if the structure of certain network is expected or not, one needs a reference model (null model). One frequently used null model is the ensemble of graphs with the same set of degrees as the original network. In this paper we argue that this ensemble can be more than just a null model -- it also carries information about the original network and factors that affect its evolution. By mapping out this ensemble in the space of some low-level network structure -- in our case those measured by the assortativity and clustering coefficients -- one can for example study how close to the valid region of the parameter space the observed networks are. Such analysis suggests which quantities are actively optimized during the evolution of the network. We use four very different biological networks to exemplify our method. Among other things, we find that high clustering might be a force in the evolution of protein interaction networks. We also find that all four networks are conspicuously robust to both random errors and targeted attacks
    corecore