309 research outputs found

    Method to Estimate Human Inattention in Teleoperation of Mobile Robots

    Get PDF
    In teleoperation of mobile robots the operator is remotely located. As a result, generally the human perception of the remote environment is distorted affecting the mission negatively. Visual information can be degraded because of video images bandwith, time lags, frame rates, point of view and motion effects among other reasons. Although many researchers have proposed a variety of methods for measuring perception, just a few can be used in control closed loop systems. This paper aims to provide a novel metric to the human visual inattention upon risk for a remotely navigated mobile robot. We present both qualitative and quantitative guidelines for designing the metric in a teleoperation of a mobile robot. The method allows to incorporate the metric in a control closed loop system, and task consists in guiding the robot from an initial point to a final one as quick as possible, considering the constraint of avoiding collisions. Furthermore, a haptic cue based on the metric is proposed in order to help the human to avoid collisions. A system stability analysis considering time varying delays is proposed. Additionally, we present a human in the loop experiment of a teleoperation of a 3D mobile robot simulator in order to remark the advantages of using human factors in the controller.Fil: Penizzotto Bacha, Franco Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentin

    Perceptual Issues Improve Haptic Systems Performance

    Get PDF

    Asymmetric collaboration in virtual reality: A taxonomy of asymmetric interfaces for collaborative immersive learning

    Get PDF
    It has been established that Virtual Reality (VR) possesses certain qualities for educational purposes. These include the ability to place the learner at the location or in the perspective that the desired knowledge exists (e.g., travelling to another planet or shrinking to miniature size to observe internal anatomy). VR is also considered to contribute with enriching the curricular content, promoting active forms of learning, performance assessment of high validity, and provide the opportunity to teach applied academic knowledge in life-like situations. In regards to teaching mathematics and geometry, three key affordances have been identified; interactive manipulation and construction of three-dimensional geometry, comprehension of spatial relationships, and rectification of abstract problems. Safety protocols and practical guidelines from classroom experimentation have also been formulated by various research projects. In this manuscript, asymmetrical immersive VR in education will be reviewed, as it is relevant for the narrative of learning situations where multiple students use the technology together. As an example, in mathematics, asymmetric VR could be used in contexts where unknown variables must be found in collaboration. The purpose of the narrative literature review is to gain a greater understanding of how asymmetric game mechanics has influence on communication and collaboration between learners. To map the dynamics of this type of learning activity, a taxonomy will be presented. Since VR is still under development in terms of hardware and software, it is important that the current and future technical possibilities are described in a conceptual manner, as well as conclude on optimal coupling between communication dynamics and collaboration mechanics

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Evaluation of Presence in Virtual Environments: Haptic Vest and User's Haptic Skills

    Get PDF
    This paper presents the integration of a haptic vest with a multimodal virtual environment, consisting of video, audio, and haptic feedback, with the main objective of determining how users, who interact with the virtual environment, benefit from tactile and thermal stimuli provided by the haptic vest. Some experiments are performed using a game application of a train station after an explosion. The participants of this experiment have to move inside the environment, while receiving several stimuli to check if any improvement in presence or realism in that environment is reflected on the vest. This is done by comparing the experimental results with those similar scenarios, obtained without haptic feedback. These experiments are carried out by three groups of participants who are classified on the basis of their experience in haptics and virtual reality devices. Some differences among the groups have been found, which can be related to the levels of realism and synchronization of all the elements in the multimodal environment that fulfill the expectations and maximum satisfaction level. According to the participants in the experiment, two different levels of requirements are to be defined by the system to comply with the expectations of professional and conventional users

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    • …
    corecore