2,047 research outputs found

    Group consensus measurement in MADM with multiple preference formats

    Get PDF
    An approach is proposed for measuring the group consensus in multiple attribute decision-making (MADM) problems with experts’ various preference information on alternatives. In the approach, multiple decision-makers give their preference information on alternatives in different formats. The uniformities and aggregation process with fuzzy majority method are employed to obtain the social fuzzy preference relation on the alternatives. Accordingly, the ranking values of the alternatives are obtained based on the obtained individual expert’s fuzzy preference relation, and the social one. The group consensus can be measured based on the ranking values of the alternatives that are derived from the individual expert’s preference information and the social one. An example of selecting robots is presented as an illustration

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    A multi-demand negotiation model based on fuzzy rules elicited via psychological experiments

    Get PDF
    This paper proposes a multi-demand negotiation model that takes the effect of human users’ psychological characteristics into consideration. Specifically, in our model each negotiating agent's preference over its demands can be changed, according to human users’ attitudes to risk, patience and regret, during the course of a negotiation. And the change of preference structures is determined by fuzzy logic rules, which are elicited through our psychological experiments. The applicability of our model is illustrated by using our model to solve a problem of political negotiation between two countries. Moreover, we do lots of theoretical and empirical analyses to reveal some insights into our model. In addition, to compare our model with existing ones, we make a survey on fuzzy logic based negotiation, and discuss the similarities and differences between our negotiation model and various consensus models

    Measuring Perceived Trust in XAI-Assisted Decision-Making by Eliciting a Mental Model

    Full text link
    This empirical study proposes a novel methodology to measure users' perceived trust in an Explainable Artificial Intelligence (XAI) model. To do so, users' mental models are elicited using Fuzzy Cognitive Maps (FCMs). First, we exploit an interpretable Machine Learning (ML) model to classify suspected COVID-19 patients into positive or negative cases. Then, Medical Experts' (MEs) conduct a diagnostic decision-making task based on their knowledge and then prediction and interpretations provided by the XAI model. In order to evaluate the impact of interpretations on perceived trust, explanation satisfaction attributes are rated by MEs through a survey. Then, they are considered as FCM's concepts to determine their influences on each other and, ultimately, on the perceived trust. Moreover, to consider MEs' mental subjectivity, fuzzy linguistic variables are used to determine the strength of influences. After reaching the steady state of FCMs, a quantified value is obtained to measure the perceived trust of each ME. The results show that the quantified values can determine whether MEs trust or distrust the XAI model. We analyze this behavior by comparing the quantified values with MEs' performance in completing diagnostic tasks.Comment: Accepted in IJCAI 2023 Workshop on Explainable Artificial Intelligence (XAI

    Are incomplete and self-confident preference relations better in multicriteria decision making? A simulation-based investigation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Incomplete preference relations and self-confident preference relations have been widely used in multicriteria decision-making problems. However, there is no strong evidence, in the current literature, to validate their use in decision-making. This paper reports on the design of two bounded rationality principle based simulation methods, and detailed experimental results, that aim at providing evidence to answer the following two questions: (1) what are the conditions under which incomplete preference relations are better than complete preference relations?; and (2) can self-confident preference relations improve the quality of decisions? The experimental results show that when the decision-maker is of medium rational degree, incomplete preference relations with a degree of incompleteness between 20% and 40% outperform complete preference relations; otherwise, the opposite happens. Furthermore, in most cases the quality of the decision making improves when using self-confident preference relations instead of incomplete preference relations. The paper ends with the presentation of a sensitivity analysis that contributes to the robustness of the experimental conclusions

    A hierarchical integration method under social constraints to maximize satisfaction in multiple criteria group decision making systems

    Get PDF
    Aggregating multiple opinions or assessments in a decision has always been a challenging field topic for researchers. Over the last decade, different approaches, mainly based on weighting data sources or decision-makers (DMs), have been proposed to resolve this issue, although social choice theory, focused on frameworks to combine individual opinions, is generally overlooked. To resolve this situation, a novel methodology is developed in this paper based on social choice theory and statistical mathematics. This method innovates by dividing the assessment into components which provides a multiple assessment analysis, assigning weights to each source regarding their position compared to the group for each considered criteria. This multiple-weighting process maximises individual and group satisfaction. Furthermore, the method makes it possible to manage previously assigned influence. An example is given to illustrate the proposed methodology. Additionally, sensitivity analysis is performed and comparisons with other methods are made. Finally, conclusions are presented.The first author acknowledges support from the Spanish Ministry of Education, Culture and Sports [grant number FPU18/01471]. The second and third author wish to recognise their support from the Serra Hunter programme. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    A self-management mechanism for non-cooperative behaviors in large-scale group consensus reaching processes

    Get PDF
    In large-scale group decision making (GDM), non-cooperative behavior in the consensus reaching process (CRP) is not unusual. For example, some individuals might form a small alliance with the aim to refuse attempts to modify their preferences or even to move them against consensus to foster the alliance’s own interests. In this paper, we propose a novel framework based on a self-management mechanism for non-cooperative behaviors in large-scale consensus reaching processes (LCRPs). In the proposed consensus reaching framework, experts are classified into different subgroups using a clustering method, and experts provide their evaluation information, i.e., the multi-criteria mutual evaluation matrices (MCMEMs), regarding the subgroups based on subgroups’ performance (e.g., professional skills, cooperation, and fairness). The subgroups’ weights are dynamically generated from the MCMEMs, which are in turn employed to update the individual experts’ weights. This self-management mechanism in the LCRP allows penalizing the weights of the experts with non-cooperative behaviors. Detailed simulation experiments and comparison analysis are presented to verify the validity of the proposed framework for managing non-cooperative behaviors in the LCRP
    • …
    corecore