549 research outputs found

    High-Performance Accurate and Approximate Multipliers for FPGA-Based Hardware Accelerators

    Get PDF
    Multiplication is one of the widely used arithmetic operations in a variety of applications, such as image/video processing and machine learning. FPGA vendors provide high-performance multipliers in the form of DSP blocks. These multipliers are not only limited in number and have fixed locations on FPGAs but can also create additional routing delays and may prove inefficient for smaller bit-width multiplications. Therefore, FPGA vendors additionally provide optimized soft IP cores for multiplication. However, in this work, we advocate that these soft multiplier IP cores for FPGAs still need better designs to provide high-performance and resource efficiency. Toward this, we present generic area-optimized, low-latency accurate, and approximate softcore multiplier architectures, which exploit the underlying architectural features of FPGAs, i.e., lookup table (LUT) structures and fast-carry chains to reduce the overall critical path delay (CPD) and resource utilization of multipliers. Compared to Xilinx multiplier LogiCORE IP, our proposed unsigned and signed accurate architecture provides up to 25% and 53% reduction in LUT utilization, respectively, for different sizes of multipliers. Moreover, with our unsigned approximate multiplier architectures, a reduction of up to 51% in the CPD can be achieved with an insignificant loss in output accuracy when compared with the LogiCORE IP. For illustration, we have deployed the proposed multiplier architecture in accelerators used in image and video applications, and evaluated them for area and performance gains. Our library of accurate and approximate multipliers is opensource and available online at https://cfaed.tu-dresden.de/pd-downloads to fuel further research and development in this area, facilitate reproducible research, and thereby enabling a new research direction for the FPGA community

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    Optimising and evaluating designs for reconfigurable hardware

    No full text
    Growing demand for computational performance, and the rising cost for chip design and manufacturing make reconfigurable hardware increasingly attractive for digital system implementation. Reconfigurable hardware, such as field-programmable gate arrays (FPGAs), can deliver performance through parallelism while also providing flexibility to enable application builders to reconfigure them. However, reconfigurable systems, particularly those involving run-time reconfiguration, are often developed in an ad-hoc manner. Such an approach usually results in low designer productivity and can lead to inefficient designs. This thesis covers three main achievements that address this situation. The first achievement is a model that captures design parameters of reconfigurable hardware and performance parameters of a given application domain. This model supports optimisations for several design metrics such as performance, area, and power consumption. The second achievement is a technique that enhances the relocatability of bitstreams for reconfigurable devices, taking into account heterogeneous resources. This method increases the flexibility of modules represented by these bitstreams while reducing configuration storage size and design compilation time. The third achievement is a technique to characterise the power consumption of FPGAs in different activity modes. This technique includes the evaluation of standby power and dedicated low-power modes, which are crucial in meeting the requirements for battery-based mobile devices

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    Closing the Gap between FPGA and ASIC:Balancing Flexibility and Efficiency

    Get PDF
    Despite many advantages of Field-Programmable Gate Arrays (FPGAs), they fail to take over the IC design market from Application-Specific Integrated Circuits (ASICs) for high-volume and even medium-volume applications, as FPGAs come with significant cost in area, delay, and power consumption. There are two main reasons that FPGAs have huge efficiency gap with ASICs: (1) FPGAs are extremely flexible as they have fully programmable soft-logic blocks and routing networks, and (2) FPGAs have hard-logic blocks that are only usable by a subset of applications. In other words, current FPGAs have a heterogeneous structure comprised of the flexible soft-logic and the efficient hard-logic blocks that suffer from inefficiency and inflexibility, respectively. The inefficiency of the soft-logic is a challenge for any application that is mapped to FPGAs, and lack of flexibility in the hard-logic results in a waste of resources when an application cannot use the hard-logic. In this thesis, we approach the inefficiency problem of FPGAs by bridging the efficiency/flexibility gap of the hard- and soft-logic. The main goal of this thesis is to compromise on efficiency of the hard-logic for flexibility, on the one hand, and to compromise on flexibility of the soft-logic for efficiency, on the other hand. In other words, this thesis deals with two issues: (1) adding more generality to the hard-logic of FPGAs, and (2) improving the soft-logic by adapting it to the generic requirements of applications. In the first part of the thesis, we introduce new techniques that expand the functionality of FPGAs hard-logic. The hard-logic includes the dedicated resources that are tightly coupled with the soft-logic –i.e., adder circuitry and carry chains –as well as the stand-alone ones –i.e., DSP blocks. These specialized resources are intended to accelerate critical arithmetic operations that appear in the pre-synthesis representation of applications; we introduce mapping and architectural solutions, which enable both types of the hard-logic to support additional arithmetic operations. We first present a mapping technique that extends the application of FPGAs carry chains for carry-save arithmetic, and then to increase the generality of the hard-logic, we introduce novel architectures; using these architectures, more applications can take advantage of FPGAs hard-logic. In the second part of the thesis, we improve the efficiency of FPGAs soft-logic by exploiting the circuit patterns that emerge after logic synthesis, i.e., connection and logic patterns. Using these patterns, we design new soft-logic blocks that have less flexibility, but more efficiency than current ones. In this part, we first introduce logic chains, fixed connections that are integrated between the soft-logic blocks of FPGAs and are well-suited for long chains of logic that appear post-synthesis. Logic chains provide fast and low cost connectivity, increase the bandwidth of the logic blocks without changing their interface with the routing network, and improve the logic density of soft-logic blocks. In addition to logic chains and as a complementary contribution, we present a non-LUT soft-logic block that comprises simple and pre-connected cells. The structure of this logic block is inspired from the logic patterns that appear post-synthesis. This block has a complexity that is only linear in the number of inputs, it sports the potential for multiple independent outputs, and the delay is only logarithmic in the number of inputs. Although this new block is less flexible than a LUT, we show (1) that effective mapping algorithms exist, (2) that, due to their simplicity, poor utilization is less of an issue than with LUTs, and (3) that a few LUTs can still be used in extreme unfortunate cases. In summary, to bridge the gap between FPGAs and ASICs, we approach the problem from two complementary directions, which balance flexibility and efficiency of the logic blocks of FPGAs. However, we were able to explore a few design points in this thesis, and future work could focus on further exploration of the design space

    Custom optimization algorithms for efficient hardware implementation

    No full text
    The focus is on real-time optimal decision making with application in advanced control systems. These computationally intensive schemes, which involve the repeated solution of (convex) optimization problems within a sampling interval, require more efficient computational methods than currently available for extending their application to highly dynamical systems and setups with resource-constrained embedded computing platforms. A range of techniques are proposed to exploit synergies between digital hardware, numerical analysis and algorithm design. These techniques build on top of parameterisable hardware code generation tools that generate VHDL code describing custom computing architectures for interior-point methods and a range of first-order constrained optimization methods. Since memory limitations are often important in embedded implementations we develop a custom storage scheme for KKT matrices arising in interior-point methods for control, which reduces memory requirements significantly and prevents I/O bandwidth limitations from affecting the performance in our implementations. To take advantage of the trend towards parallel computing architectures and to exploit the special characteristics of our custom architectures we propose several high-level parallel optimal control schemes that can reduce computation time. A novel optimization formulation was devised for reducing the computational effort in solving certain problems independent of the computing platform used. In order to be able to solve optimization problems in fixed-point arithmetic, which is significantly more resource-efficient than floating-point, tailored linear algebra algorithms were developed for solving the linear systems that form the computational bottleneck in many optimization methods. These methods come with guarantees for reliable operation. We also provide finite-precision error analysis for fixed-point implementations of first-order methods that can be used to minimize the use of resources while meeting accuracy specifications. The suggested techniques are demonstrated on several practical examples, including a hardware-in-the-loop setup for optimization-based control of a large airliner.Open Acces

    Study of effective calculation operation implementation remaining multi-bit numbers division on FPGA

    Get PDF
    The rapid enhanced in the fields of the computers that leads to rapid breaking for ciphering algorithms and for these reasons most of ciphering algorithm tried to used multidigit for ciphering texts or images. Using the multidigit will increase the safety of information and protected it from supercomputer from breaking the ciphering algorithms. The current information systems employ operations on finite fields of various structures (for example, cryptographic systems). In this instance, it's common to have to deal with enormous numbers (128 bits or more). The proposed operation of discovering the remainder of the division of multidigit numbers will considerably improve the speed of such systems if implemented

    Applications for FPGA's on Nanosatellites

    Get PDF
    This thesis examines the feasibility of using a Field Programmable Gate Array (FPGA) based design on-board a CubeSat-sized nanosatellite. FPGAs are programmable logic devices that allow for the implementation of custom digital hardware on a single Integrated Circuit (IC). By using these FPGAs in spacecraft, more efficient processing can be done by moving the design onto hardware. A variety of different FPGA-based designs are looked at, including a Watchdog Timer (WDT), a Global Positioning System (GPS) receiver, and a camera interface

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs
    • …
    corecore