1,031 research outputs found

    MIPv6 Experimental Evaluation using Overlay Networks

    Get PDF
    The commercial deployment of Mobile IPv6 has been hastened by the concepts of Integrated Wireless Networks and Overlay Networks, which are present in the notion of the forthcoming generation of wireless communications. Individual wireless access networks show limitations that can be overcome through the integration of different technologies into a single unified platform (i.e., 4G systems). This paper summarises practical experiments performed to evaluate the impact of inter-networking (i.e. vertical handovers) on the Network and Transport layers. Based on our observations, we propose and evaluate a number of inter-technology handover optimisation techniques, e.g., Router Advertisements frequency values, Binding Update simulcasting, Router Advertisement caching, and Soft Handovers. The paper concludes with the description of a policy-based mobility support middleware (PROTON) that hides 4G networking complexities from mobile users, provides informed handover-related decisions, and enables the application of different vertical handover methods and optimisations according to context.Publicad

    Design and Experimental Evaluation of a Route Optimisation Solution for NEMO

    Get PDF
    An important requirement for Internet protocol (IP) networks to achieve the aim of ubiquitous connectivity is network mobility (NEMO). With NEMO support we can provide Internet access from mobile platforms, such as public transportation vehicles, to normal nodes that do not need to implement any special mobility protocol. The NEMO basic support protocol has been proposed in the IETF as a first solution to this problem, but this solution has severe performance limitations. This paper presents MIRON: Mobile IPv6 route optimization for NEMO, an approach to the problem of NEMO support that overcomes the limitations of the basic solution by combining two different modes of operation: a Proxy-MR and an address delegation with built-in routing mechanisms. This paper describes the design and rationale of the solution, with an experimental validation and performance evaluation based on an implementation.Publicad

    A Survey on Proxy Mobile IPv6 Handover

    Full text link
    [EN] As wireless technologies have been improving in recent years, a mobility management mechanism is required to provide seamless and ubiquitous mobility for end users who are roaming among points of attachment in wireless networks. Thus, Mobile IPv6 was developed by the Internet Engineering Task Force (IETF) to support the mobility service. However, Mobile IPv6 is unable to fulfill the requirements of real-time applications, such as video streaming service and voice over IP service, due to its high handover (HO) latency. To address this problem, Proxy Mobile IPv6 (PMIPv6) has been introduced by the IETF. In PMIPv6, which is a network-based approach, the serving network controls mobility management on behalf of the mobile node (MN). Thus, the MN is not required to participate in any mobility-related signaling. However, the PMIPv6 still suffers from lengthy HO latency and packet loss during a HO. This paper explores an elaborated survey on the HO procedure of PMIPv6 protocols and proposed approaches accompanied by a discussion about their points of weakness.This work was supported in part by the University of Malaya under UMRG Grant (RG080/11ICT).Modares, H.; Moravejosharieh, A.; Lloret, J.; Salleh, R. (2016). A Survey on Proxy Mobile IPv6 Handover. IEEE Systems Journal. 10(1):208-217. https://doi.org/10.1109/JSYST.2013.2297705S20821710

    The Design and Implementation of an Over-the-top Cloud-based Vertical Handover Decision Service for Heterogeneous Wireless Networks

    Get PDF
    The widespread availability of heterogeneous wireless networks (hetnets) presents a resource allocation challenge to network operators and administrators. Overlapping network coverage should be utilized to its fullest extent, providing users with a fair share of bandwidth while maximizing the efficient use of the operator\u27s resources. Currently, network selection occurs locally at the mobile device and does not take into account factors such as the state of other networks that might be available in the device\u27s location. The local decision made by the device can often result in underutilization of network resources and a degraded user experience. This type of selfish network selection might not result in optimal bandwidth allocation when compared to approaches that make use of a centralized resource controller \cite{gpf}. The decision making process behind the selection of these networks continues to be an open area of research, and a variety of algorithms have been proposed to solve this problem. An over-the-top handover decision service treats each wireless access network in a hetnet as a black box, assuming detailed network topology and state information is unavailable to the handover decision algorithm. The algorithm then uses network data gathered empirically from users to provide them with a network selection service that considers the current conditions of available networks in a given location. This is a departure from past designs of vertical handover decision algorithms, which tend to approach the problem from the perspective of individual network operators. The wide range of radio access technologies operated by different network operators that are available to a device within a hetnet, coupled with the mobile data offload effort, is the primary motivator behind our novel choice in direction. This thesis documents the design and implementation of such an over-the-top vertical handover decision service

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains
    • …
    corecore